Volterra integral inclusions via Henstock-Kurzweil-Pettis integral
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 87-101.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.
Keywords: Volterra integral inclusion, Henstock-Kurzweil integral, Henstock-Kurzweil-Pettis integral, set-valued integral
@article{DMDICO_2006_26_1_a3,
     author = {Satco, Bianca},
     title = {Volterra integral inclusions via {Henstock-Kurzweil-Pettis} integral},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {87--101},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     zbl = {1131.45001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a3/}
}
TY  - JOUR
AU  - Satco, Bianca
TI  - Volterra integral inclusions via Henstock-Kurzweil-Pettis integral
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2006
SP  - 87
EP  - 101
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a3/
LA  - en
ID  - DMDICO_2006_26_1_a3
ER  - 
%0 Journal Article
%A Satco, Bianca
%T Volterra integral inclusions via Henstock-Kurzweil-Pettis integral
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2006
%P 87-101
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a3/
%G en
%F DMDICO_2006_26_1_a3
Satco, Bianca. Volterra integral inclusions via Henstock-Kurzweil-Pettis integral. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 87-101. http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a3/

[1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer 1984.

[2] R.J. Aumann, Integrals of Set-Valued Functions, J. Math. Anal. Appl. 12 (1965), 1-12.

[3] D.L. Azzam, C. Castaing and L. Thibault, Three boundary value problems for second order differential inclusions in Banach spaces. Well-posedness in optimization and related topics, Control Cybernet. 31 (3) (2002), 659-693.

[4] E. Balder and A.R. Sambucini, On weak compactness and lower closure results for Pettis integrable (multi)functions, Bull. Polish Acad. Sci. Math. 52 (1) (2004), 53-61.

[5] A. Boccuto and B. Riečan, A note on a Pettis-Kurzweil-Henstock-type integral in Riesz spaces, Real Anal. Exch. 28 (2002/2003), 153-161.

[6] S.S. Cao, The Henstock integral for Banach-valued functions, SEA Bull. Math. 16 (1992), 35-40.

[7] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin 1977.

[8] M. Cichoń, On solutions of differential equations in Banach spaces, Nonlinear Anal. 60 (2005), 651-667.

[9] M. Cichoń, I. Kubiaczyk and A. Sikorska, The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem, Czechoslovak Mathematical Journal 54 (129) (2004), 279-289.

[10] L. Di Piazza, Kurzweil-Henstock type integration on Banach spaces, Real Anal. Exch. 29 (2) (2003/2004), 543-556.

[11] L. Di Piazza and K. Musial, Set-valued Kurzweil-Henstock-Pettis integral, Set-Valued Anal. 13 (2) (2005), 167-179.

[12] I. Dobrakov, On representation of linear operators on C₀(T,X), Czechoslovak Mathematical Journal 20 (1971), 13-30.

[13] K. El Amri and C. Hess, On the Pettis Integral of Closed Valued Multifunctions, Set-Valued Analysis 8 (2000), 329-360.

[14] M. Federson and R. Bianconi, Linear integral equations of Volterra concerning Henstock integrals, Real Anal. Exch. 25 (1) (1999/2000), 389-418.

[15] J.L. Gamez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math. 130 (1998), 115-133.

[16] C. Godet-Thobie and B. Satco, Decomposability and uniform integrability in Pettis integration, Quaest. Math. 29 (2006), 39-58.

[17] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Grad. Stud. in Math. 4, 1994.

[18] S. Krzyśka and I. Kubiaczyk, Fixed point theorems for upper semicontinuous and weakly-weakly upper semicontinuous multivalued mappings, Math. Japon. 47 (2) (1998), 237-240.

[19] I. Kubiaczyk, On fixed point theorem for weakly sequentially continuous mappings, Discuss. Math. Diff. Inclusions 15 (1995), 15-20.

[20] A. Martellotti and A.R. Sambucini, Comparison between Aumann and Bochner integral, J. Math. Anal. Appl. 260 (1) (2001), 6-17.

[21] A.A. Mitchell and C. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, Nonlinear equations in abstract spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex. 1977), 387-403, Academic Press, New York 1978.

[22] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), 985-999.

[23] K. Musial, Topics in the theory of Pettis integration, in School of Measure theory and Real Analysis, Grado, Italy, May 1992.

[24] D. O'Regan and R. Precup, Fixed Point Theorems for Set-Valued Maps and Existence Principles for Integral Inclusions, J. Math. Anal. Appl. 245 (2000), 594-612.

[25] A.R. Sambucini, A survey on multivalued integration, Atti Sem. Mat. Fis. Univ. Modena, L (2002), 53-63.

[26] A. Sikorska-Nowak, Retarded functional differential equations in Banach spaces and Henstock-Kurzweil integrals, Demonstratio Math. 35 (1) (2002), 49-60.

[27] A.A. Tolstonogov, On comparison theorems for differential inclusions in locally convex space. I. Existence of solutions. (Russian) Diff. Urav. 17 (4) (1981), 651-659.