Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2006_26_1_a3, author = {Satco, Bianca}, title = {Volterra integral inclusions via {Henstock-Kurzweil-Pettis} integral}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {87--101}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, zbl = {1131.45001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a3/} }
TY - JOUR AU - Satco, Bianca TI - Volterra integral inclusions via Henstock-Kurzweil-Pettis integral JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2006 SP - 87 EP - 101 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a3/ LA - en ID - DMDICO_2006_26_1_a3 ER -
%0 Journal Article %A Satco, Bianca %T Volterra integral inclusions via Henstock-Kurzweil-Pettis integral %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2006 %P 87-101 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a3/ %G en %F DMDICO_2006_26_1_a3
Satco, Bianca. Volterra integral inclusions via Henstock-Kurzweil-Pettis integral. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 87-101. http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a3/
[1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer 1984.
[2] R.J. Aumann, Integrals of Set-Valued Functions, J. Math. Anal. Appl. 12 (1965), 1-12.
[3] D.L. Azzam, C. Castaing and L. Thibault, Three boundary value problems for second order differential inclusions in Banach spaces. Well-posedness in optimization and related topics, Control Cybernet. 31 (3) (2002), 659-693.
[4] E. Balder and A.R. Sambucini, On weak compactness and lower closure results for Pettis integrable (multi)functions, Bull. Polish Acad. Sci. Math. 52 (1) (2004), 53-61.
[5] A. Boccuto and B. Riečan, A note on a Pettis-Kurzweil-Henstock-type integral in Riesz spaces, Real Anal. Exch. 28 (2002/2003), 153-161.
[6] S.S. Cao, The Henstock integral for Banach-valued functions, SEA Bull. Math. 16 (1992), 35-40.
[7] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin 1977.
[8] M. Cichoń, On solutions of differential equations in Banach spaces, Nonlinear Anal. 60 (2005), 651-667.
[9] M. Cichoń, I. Kubiaczyk and A. Sikorska, The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem, Czechoslovak Mathematical Journal 54 (129) (2004), 279-289.
[10] L. Di Piazza, Kurzweil-Henstock type integration on Banach spaces, Real Anal. Exch. 29 (2) (2003/2004), 543-556.
[11] L. Di Piazza and K. Musial, Set-valued Kurzweil-Henstock-Pettis integral, Set-Valued Anal. 13 (2) (2005), 167-179.
[12] I. Dobrakov, On representation of linear operators on C₀(T,X), Czechoslovak Mathematical Journal 20 (1971), 13-30.
[13] K. El Amri and C. Hess, On the Pettis Integral of Closed Valued Multifunctions, Set-Valued Analysis 8 (2000), 329-360.
[14] M. Federson and R. Bianconi, Linear integral equations of Volterra concerning Henstock integrals, Real Anal. Exch. 25 (1) (1999/2000), 389-418.
[15] J.L. Gamez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math. 130 (1998), 115-133.
[16] C. Godet-Thobie and B. Satco, Decomposability and uniform integrability in Pettis integration, Quaest. Math. 29 (2006), 39-58.
[17] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Grad. Stud. in Math. 4, 1994.
[18] S. Krzyśka and I. Kubiaczyk, Fixed point theorems for upper semicontinuous and weakly-weakly upper semicontinuous multivalued mappings, Math. Japon. 47 (2) (1998), 237-240.
[19] I. Kubiaczyk, On fixed point theorem for weakly sequentially continuous mappings, Discuss. Math. Diff. Inclusions 15 (1995), 15-20.
[20] A. Martellotti and A.R. Sambucini, Comparison between Aumann and Bochner integral, J. Math. Anal. Appl. 260 (1) (2001), 6-17.
[21] A.A. Mitchell and C. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, Nonlinear equations in abstract spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex. 1977), 387-403, Academic Press, New York 1978.
[22] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), 985-999.
[23] K. Musial, Topics in the theory of Pettis integration, in School of Measure theory and Real Analysis, Grado, Italy, May 1992.
[24] D. O'Regan and R. Precup, Fixed Point Theorems for Set-Valued Maps and Existence Principles for Integral Inclusions, J. Math. Anal. Appl. 245 (2000), 594-612.
[25] A.R. Sambucini, A survey on multivalued integration, Atti Sem. Mat. Fis. Univ. Modena, L (2002), 53-63.
[26] A. Sikorska-Nowak, Retarded functional differential equations in Banach spaces and Henstock-Kurzweil integrals, Demonstratio Math. 35 (1) (2002), 49-60.
[27] A.A. Tolstonogov, On comparison theorems for differential inclusions in locally convex space. I. Existence of solutions. (Russian) Diff. Urav. 17 (4) (1981), 651-659.