Mathematical treatment for thermoelastic plate with a curvilinear hole in S-plane
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 77-86.

Voir la notice de l'article provenant de la source Library of Science

The Cauchy integral method has been applied to derive exact and closed expressions for Goursat's functions for the first and second fundamental problems for an infinite thermoelastic plate weakened by a hole having arbitrary shape. The plate considered is conformally mapped to the area of the right half-plane. Many previous discussions of various authors can be considered as special cases of this work. The shape of the hole being an ellipse, a crescent, a triangle, or a cut having the shape of a circular arc are included as special cases.
Keywords: infinite plate, Cauchy integral, first and second fundamental problems, integro-differential equation
@article{DMDICO_2006_26_1_a2,
     author = {El-Bary, Alaa},
     title = {Mathematical treatment for thermoelastic plate with a curvilinear hole in {S-plane}},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {77--86},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     zbl = {1132.74025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a2/}
}
TY  - JOUR
AU  - El-Bary, Alaa
TI  - Mathematical treatment for thermoelastic plate with a curvilinear hole in S-plane
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2006
SP  - 77
EP  - 86
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a2/
LA  - en
ID  - DMDICO_2006_26_1_a2
ER  - 
%0 Journal Article
%A El-Bary, Alaa
%T Mathematical treatment for thermoelastic plate with a curvilinear hole in S-plane
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2006
%P 77-86
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a2/
%G en
%F DMDICO_2006_26_1_a2
El-Bary, Alaa. Mathematical treatment for thermoelastic plate with a curvilinear hole in S-plane. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 77-86. http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a2/

[1] M.A. Abdou and E.A. Khar Eldin, A finite plate weakened by a hole having arbitrary shape, J. Comp. Appl. Math. 56 (1994), 341-351.

[2] M.A. Abdou and A.A. El-Bary, Fundamental problems for infinite plate with a curvilinear hole having finite poles, Math. Prob. In. Eng. 7 (6) (2001), 485-501.

[3] V.M. Aleksandrov and E.V. Kovalenko, Problems with mixed boundary conditions in continuous mechanics, Nauka Moscow 1986.

[4] A.A. El-Bary, et al, Solution of first and second fundamental problems of an elastic infinite plate with three poles, New Zeland J. Math. 32 (2) (2003).

[5] A.A. El-Bary and I.H. El-Sirafy, An infinite plate with a curvilinear hole in s-plane, Estratto da le Matematiche vol. LIV- fasc II (1999), 261-274.

[6] A.A. El-Bary, Singular integrodifferential equation for infinite thermoelastic plate, Rep. Math. Phy. 55 (3) (2005), 397-403.

[7] A.A. El-Bary, First and second fundamental problem of an elastic infinite plate with holes, Korean J. Comp. Appl. Math. 8 (3) (2001), 675-683.

[8] I.H. El-Sirafy, Stretched plates weakened by inner curvilinear holes, J. Appl. Math and Phys. (ZAMP) 28 (1977), 1153-1159.

[9] A.H. England, Complex variable methods in elasticity, London, New York 1971.

[10] N.I. Muskhelishvili, Some basic problems of mathematical theory of elasticity, Moscow 1949.

[11] H. Parkus, Thermoelasticity, Springer Verlag, New York 1976.