Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2006_26_1_a1, author = {Dhage, Bupurao and Petru\c{s}el, Adrian}, title = {The method of upper and lower solutions for perturbed nth order differential inclusions}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {57--76}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, zbl = {1139.34005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a1/} }
TY - JOUR AU - Dhage, Bupurao AU - Petruşel, Adrian TI - The method of upper and lower solutions for perturbed nth order differential inclusions JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2006 SP - 57 EP - 76 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a1/ LA - en ID - DMDICO_2006_26_1_a1 ER -
%0 Journal Article %A Dhage, Bupurao %A Petruşel, Adrian %T The method of upper and lower solutions for perturbed nth order differential inclusions %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2006 %P 57-76 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a1/ %G en %F DMDICO_2006_26_1_a1
Dhage, Bupurao; Petruşel, Adrian. The method of upper and lower solutions for perturbed nth order differential inclusions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 57-76. http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a1/
[1] R. Agarwal, B.C. Dhage and D. O'Regan, The upper and lower solution method for differential inclusions via a lattice fixed point theorem, Dynam. Systems Appl. 12 (2003), 1-7.
[2] J. Aubin and A. Cellina, Differential Inclusions, Springer Verlag 1984.
[3] M. Benchohra, Upper and lower solutions method for second order differential inclusions, Dynam. Systems Appl. 11 (2002), 13-20.
[4] B.C. Dhage, A fixed point theorem for multi-valued mappings with applications, preprint.
[5] B.C. Dhage, Multi-valued mappings and fixed points I.
[6] B.C. Dhage and S.M. Kang, Upper and lower solutions method for first order discontinuous differential inclusions, Math. Sci. Res. J. 6 (2002), 527-533.
[7] B.C. Dhage, T.L. Holambe and S.K. Ntouyas, Upper and lower solutions method for second order discontinuous differential inclusions, Math. Sci. Res. J. 7 (2003), 206-212.
[8] B.C. Dhage, T.L. Holambe and S.K. Ntouyas, The method of upper and lower solutions for Caratheodory nth order differential inclusions, Electronic J. Diff. Equ. 8 (2004), 1-9.
[9] N. Halidias and N. Papageorgiou, Second order multi-valued boundary value problems, Arch. Math. Brno 34 (1998), 267-284.
[10] S. Heikkila and V. Lakshmikantham, Monotone Iterative Technique for Nonlinear Discontinuous Differential Equations, Marcel Dekker Inc., New York 1994.
[11] S. Hu and N. Papageorgiu, Handbook of Multi-valued Analysis, Volume I, Kluwer Academic Publishers, Dordrecht 1997.
[12] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.
[13] M. Martelli, A Rothe's type theorem for non compact acyclic-valued maps, Boll. Un. Mat. Ital. 4 (Suppl. Fasc.) (1975), 70-76.