Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2006_26_1_a0, author = {Dhage, Bupurao}, title = {Some algebraic fixed point theorems for multi-valued mappings with applications}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {5--55}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, zbl = {1228.47049}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a0/} }
TY - JOUR AU - Dhage, Bupurao TI - Some algebraic fixed point theorems for multi-valued mappings with applications JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2006 SP - 5 EP - 55 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a0/ LA - en ID - DMDICO_2006_26_1_a0 ER -
%0 Journal Article %A Dhage, Bupurao %T Some algebraic fixed point theorems for multi-valued mappings with applications %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2006 %P 5-55 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a0/ %G en %F DMDICO_2006_26_1_a0
Dhage, Bupurao. Some algebraic fixed point theorems for multi-valued mappings with applications. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 5-55. http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a0/
[1] R.P. Agarwal, B.C. Dhage and D. O'Regan, The method of upper and lower solution for differential inclusions via a lattice fixed point theorem, Dynamic Systems Appl. 12 (2003), 1-7.
[2] H. Amann, Order Structures and Fixed Points, ATTI 2⁰ Sem Anal. Funz. Appl. Italy 1977.
[3] J. Appell, H.T. Nguyen and P. Zabreiko, Multivalued superposition operators in ideal spaces of vector functions III, Indag. Math. 3 (1992), 1-9.
[4] J. Aubin and A. Cellina, Differential Inclusions, Springer Verlag, New York 1984.
[5] M. Benchohra, Upper and lower solutions method for second order differential inclusions, Dynam. Systems Appl. 11 (2002), 13-20.
[6] H. Covitz and S.B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11.
[7] K. Deimling, Multi-valued Differential Equations, De Gruyter, Berlin 1998.
[8] B.C. Dhage, On some variants of Schauder's fixed point principle and applications to nonlinear integral equations, J. Math. Phy. Sci. 25 (1988), 603-611.
[9] B.C. Dhage, A lattice fixed point theorem for multi-valued mappings and applications, Chinese Journal of Math. 19 (1991), 11-22.
[10] B.C. Dhage, Some fixed point theorems in ordered Banach spaces and applications, The Math. Student 63 (1-4) (1992), 81-88.
[11] B.C. Dhage, Fixed point theorems in ordered Banach algebras and applications, PanAmer. Math. J. 9 (4) (1999), 93-102.
[12] B.C. Dhage, A functional integral inclusion involving Carathéodories, Electronic J. Qualitative Theory Diff. Equ. 14 (2003), 1-18.
[13] B.C. Dhage, A functional integral inclusion involving discontinuities, Fixed Point Theory 5 (2004), 53-64.
[14] B.C. Dhage, Multi-valued operators and fixed point theorems in Banach algebras I, Taiwanese J. Math. 10 (2006), 1025-1045.
[15] B.C. Dhage, A fixed point theorem in Banach algebras involving three operators with applications, Kyungpook Math. J. 44 (2004), 145-155.
[16] B.C. Dhage, On existence of extremal solutions of nonlinear functional integral equations in Banach algebras, J. Appl. Math. Stoch. Anal. 2004 (2004), 271-282.
[17] B.C. Dhage, A fixed point theorem for multi-valued mappings in ordered Banach spaces with applications I, Nonlinear Anal. Forum 10 (2005), 105-126.
[18] B.C. Dhage and D. O'Regan, A lattice fixed point theorem and multi-valued differential equations, Functional Diff. Equations 9 (2002), 109-115.
[19] B.C. Dhage and S.M. Kang, Upper and lower solutions method for first order discontinuous differential inclusions, Math. Sci. Res. J. 6 (11) (2002), 527-533.
[20] Dajun Guo and V. Lakshmikanthm, Nonlinear Problems in Abstract Cones, Academic Press, New York-London 1988.
[21] J. Dugundji and A. Granas, Fixed Point Theory, Springer Verlag 2003.
[22] N. Halidias and N. Papageorgiou, Second order multi-valued boundary value problems, Arch. Math. (Brno) 34 (1998), 267-284.
[23] S. Heikkilä, On chain method used in fixed point theory, Nonlinear Studies 6 (2) (1999), 171-180.
[24] S. Heikkilä and S. Hu, On fixed points of multi-functions in ordered spaces, Appl. Anal. 53 (1993), 115-127.
[25] S. Heikkilä and V. Lakshmikantham, Monotone Iterative Technique for Nonlinear Discontinues Differential Equations, Marcel Dekker Inc., New York 1994.
[26] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer Academic Publishers Dordrechet-Boston-London 1997.
[27] M. Kisielewicz, Differential inclusions and optimal control, Kluwer Acad. Publ., Dordrecht 1991.
[28] M.A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press 1964.
[29] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phy. 13 (1965), 781-786.
[30] A. Tarski, A lattice theoretical fixed-point theorem and its applications, Pacific J. Math. 5 (1955), 285-309.
[31] D.M. Wagner, Survey of measurable selection theorems, SIAM Jour. Control Optim. 15 (1975), 859-903.
[32] E. Zeidler, Nonlinear Functional Analysis and Its Applications:~Part I, Springer Verlag 1985.