Multi-valued operators and fixed point theorems in Banach algebras
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 24 (2004) no. 1, pp. 97-122.

Voir la notice de l'article provenant de la source Library of Science

In this paper, two multi-valued versions of the well-known hybrid fixed point theorem of Dhage [6] in Banach algebras are proved. As an application, an existence theorem for a certain differential inclusion in Banach algebras is also proved under the mixed Lipschitz and compactness type conditions.
Keywords: multi-valued operator, fixed point theorem and integral inclusion
@article{DMDICO_2004_24_1_a6,
     author = {Dhage, Bapur},
     title = {Multi-valued operators and fixed point theorems in {Banach} algebras},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {97--122},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     zbl = {1078.47004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a6/}
}
TY  - JOUR
AU  - Dhage, Bapur
TI  - Multi-valued operators and fixed point theorems in Banach algebras
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2004
SP  - 97
EP  - 122
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a6/
LA  - en
ID  - DMDICO_2004_24_1_a6
ER  - 
%0 Journal Article
%A Dhage, Bapur
%T Multi-valued operators and fixed point theorems in Banach algebras
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2004
%P 97-122
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a6/
%G en
%F DMDICO_2004_24_1_a6
Dhage, Bapur. Multi-valued operators and fixed point theorems in Banach algebras. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 24 (2004) no. 1, pp. 97-122. http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a6/

[1] J. Andres and L. Górniewicz, Topolological Fixed Point Principles for Boundary Value Problems, Kluwer 2003.

[2] J. Aubin and A. Cellina, Differential Inclusions, Springer Verlag 1984.

[3] J. Banaś and M. Lecho, Fixed points of the product of operators in Banach algebras, PanAmerican Math. Journal 12 (2002), 101-109.

[4] H. Covitz and S.B. Nadler jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11.

[5] K. Deimling, Multivalued Differential Equations, W. de Gruyter 1992.

[6] B.C. Dhage, On a fixed point theorem in Banach algebras with aplications, Appl. Math. Lett., accepted.

[7] B.C. Dhage, Some nonlinear alternatives in Banach algebras with applications I, Nonlinear Studies 11 (2004), to appear.

[8] B.C. Dhage, Multi-valued operators and fixed point theorems in Banach algebras II, Comp. Math. Appl. (2004), to appear.

[9] B.C. Dhage, A functional integro-differential equation in Banach algebras, Functional Diff. Equations 11 (3-4) (2004), 321-332.

[10] B.C. Dhage and D. O'Regan, A fixed point theorem in Banach algebras with applications to functional integral equations, Functional Diff. Equations 7 (3-4) (2000), 259-267.

[11] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer 1999.

[12] A. Granas and J. Dugundji, Fixed Point Theory, Springer Verlag 2003.

[13] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer Academic Publishers Dordrechet/Boston/London 1997.

[14] M. Kisielewicz, Differential inclusions and optimal control, Kluwer Acad. Publ., Dordrecht 1991.

[15] M.A. Krasnoselskii, Topological Methods in The Theory of Nonlinear Integral Equations, Pergamon Press 1964.

[16] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Xci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.

[17] T.C. Lim, On fixed point stability for set-valued contraction mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436-441.

[18] A. Petrusel, Multivalued operators and fixed points, P.U.M.A. 9 (1998), 165-170.

[19] W.V. Petryshyn and P.M. Fitzpatrtick, A degree theory, fixed point theorems, and mappings theorems for multi-valued noncompact mappings, Trans. Amer. Math. Xoc. 194 (1974), 1-25.

[20] D. O'Regan, New fixed point results for 1-set contractive set-valued maps, Computes Math. Appl. 35 (4) (1998), 27-34.

[21] L. Rybiński, An application of the continuous selection theorem to the study of the fixed points of multivalued mappings, J. Math. Anal. Appl. 153 (1990), 391-396.

[22] E. Zeidler, Nonlinear Functional Analysis and Its Applications: Part I, Springer Verlag 1985.