On boundary value problems of second order differential inclusions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 24 (2004) no. 1, pp. 73-96.

Voir la notice de l'article provenant de la source Library of Science

This paper presents sufficient conditions for the existence of solutions to boundary-value problems of second order multi-valued differential inclusions. The existence of extremal solutions is also obtained under certain monotonicity conditions.
Keywords: differential inclusion, method of upper and lower solutions, existence theorem
@article{DMDICO_2004_24_1_a5,
     author = {Dhage, Bapur},
     title = {On boundary value problems of second order differential inclusions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {73--96},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     zbl = {1078.34003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a5/}
}
TY  - JOUR
AU  - Dhage, Bapur
TI  - On boundary value problems of second order differential inclusions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2004
SP  - 73
EP  - 96
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a5/
LA  - en
ID  - DMDICO_2004_24_1_a5
ER  - 
%0 Journal Article
%A Dhage, Bapur
%T On boundary value problems of second order differential inclusions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2004
%P 73-96
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a5/
%G en
%F DMDICO_2004_24_1_a5
Dhage, Bapur. On boundary value problems of second order differential inclusions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 24 (2004) no. 1, pp. 73-96. http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a5/

[1] R. Agarwal, B.C. Dhage and D. O'Regan, The upper and lower solution method for differential inclusions via a lattice fixed point theorem, Dynamic Systems Appl. 12 (2003), 1-7.

[2] J. Appell, H.T. Nguven and P. Zabreiko, Multi-valued superposition operators in ideal spaces of vector functions, Indag. Math. 3 (1992), 1-8.

[3] J. Aubin and A. Cellina, Differential Inclusions, Springer Verlag 1984.

[4] P.B. Bailey, L.F. Shampine and P.E. Waltman, Nonlinear Two Point Boundary Value Problems, Academic Press, New York 1968.

[5] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Coll. Publ. vol. 25, New York 1967.

[6] S. Bernfield and V. Lakshmikantham, An Introduction to Boundary Value Problems, Academic Press, New York 1974.

[7] M. Benchohra, Upper and lower solutions method for second order differential inclusions, Dynam. Systems Appl. 11 (2002), 13-20.

[8] M. Benchohra and S.K. Ntouyas, On second order differential inclusions with periodic boundary conditions, Acta Math. Univ. Comenianea LXIX (2000), 173-181.

[9] M. Benchohra and S.K. Ntouyas, The lower and upper solutions method for first order differential inclusions with nonlinear boundary conditions, J. Ineq. Pure Appl. Math. 3 (1) (2002), Art. 14.

[10] B.C. Dhage, A functional integral inclusion involving discontinuities, Fixed Point Theory 5 (2004), 53-64.

[11] B.C. Dhage, A fixed point theorem for multi-valued mappings in Banach spaces with applications, Nonlinear Anal. (to appear).

[12] B.C. Dhage, Monotone method for discontinuous differential inclusions, Math. Sci. Res. J. 8 (3) (2004), 104-113.

[13] B.C. Dhage and S.M. Kang, Upper and lower solutions method for first order discontinuous differential inclusions, Math. Sci. Res. J. 6 (2002), 527-533.

[14] B.C. Dhage and S. Heikkila, On nonlinear boundary value problems with deviating arguments and discontinuous right hand side, J. Appl. Math. Stoch. Anal. 6 (1993), 83-92.

[15] B.C. Dhage, T.L. Holambe and S.K. Ntouyas, Upper and lower solutions method for second order discontinuous differential inclusions, Math. Sci. Res. J. 7 (2003), 206-212.

[16] B.C. Dhage and D.O. Regan, A lattice fixed point theorem and multi-valued differential equations, Functional Diff. Equations 9 (2002), 109-115.

[17] J. Dugundji and A. Granas, Fixed point theory, Springer Verlag 2003.

[18] N. Halidias and N. Papageorgiou, Second order multi-valued boundary value problems, Arch. Math. (Brno) 34 (1998), 267-284.

[19] S. Heikkila, On second order discontinuous scalar boundary value problem, Nonlinear Studies 3 (2) (1996), 153-162.

[20] S. Heikkila and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker Inc., New York 1994.

[21] S. Heikkila, J.W. Mooney and S. Seikkila, Existence, uniqueness and comparison results for nonlinear boundary value problems involving deviating arguments, J. Diff. Eqn 41 (3) (1981), 320-232.

[22] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations , Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.

[23] M. Martelli, A Rothe's type theorem for non compact acyclic-valued maps, Boll. Un. Mat. Ital. 4 (Suppl. Fasc.) (1975), 70-76.