Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2004_24_1_a4, author = {Ahmed, N.U.}, title = {Controllability of evolution equations and inclusions driven by vector measures}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {49--72}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2004}, zbl = {1076.93007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a4/} }
TY - JOUR AU - Ahmed, N.U. TI - Controllability of evolution equations and inclusions driven by vector measures JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2004 SP - 49 EP - 72 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a4/ LA - en ID - DMDICO_2004_24_1_a4 ER -
%0 Journal Article %A Ahmed, N.U. %T Controllability of evolution equations and inclusions driven by vector measures %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2004 %P 49-72 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a4/ %G en %F DMDICO_2004_24_1_a4
Ahmed, N.U. Controllability of evolution equations and inclusions driven by vector measures. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 24 (2004) no. 1, pp. 49-72. http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a4/
[1] H.O. Fattorini, Some Remarks on Complete Controllability, SICON 4 (1966), 686-694.
[2] H.O. Fattorini, On Complete Controllability of Linear Systems, JDE 3 (1967), 391-402.
[3] H.O. Fattorini, Local Controllability of a Nonlinear Wave Equation, Mathematical Systems Theory 9 (1975), 3-45.
[4] H.O. Fattorini, Infinite Dimensional Optimization and Control Theory, Encyclopedia of mathematics and its applications, Cambridge University Press 1998.
[5] R. Triggiani, A Note on the Lack of Exact Controllability and Optimization, SICON 15 (1977), 407-411.
[6] D.L. Russell, Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions, Siam Review 20 (1978), 639-739.
[7] N.U. Ahmed, Finite-Time Null Controllability for a Class of Linear Evolution Equations on a Banach Space with Control Constraints, J. Opt. Th. and Appl. 47 (2) (1985), 129-158.
[8] V. Lakshmikantham, D.D. Bainov and P.S. Simenov, Theory of Impulsive Differential Equations, World Scientific, 1989, Singapore, London.
[9] N.U. Ahmed, Systems Governed by Impulsive Differential Inclusions on Hilbert Spaces, Nonlinear Analysis: TMA 45 (2001), 693-706.
[10] N.U. Ahmed, Necessary Conditions of Optimality for Impulsive Systems on Banach Spaces, Nonlinear Analysis: TMA 51 (2002), 409-424.
[11] N.U. Ahmed, Impulsive Perturbation of C₀ Semigroups and Evolution Inclusions, Nonlinear Funct. Anal. Appl. 7 (4) (2002), 555-580.
[12] N.U. Ahmed, Existence of Optimal Controls for a General Class of Impulsive Systems on Banach Spaces, SIAM, Journal on Contr. and Optim. 42 (2) (2003), 665-685.
[13] J. Diestel and J.J. Uhl, Jr., Vector Measures, AMS Mathematical Surveys 15 (1977), AMS, Providence, Rhode Island.
[14] K. Yosida, Functional Analysis, (second edition), Springer-Verlag New York inc. 1968.
[15] N.U. Ahmed, Semigroup Theory With Applications to Systems and Control, (1991), Pitman Research Notes in Mathematics Series, 246, Longman Scientific and Technical, U.K, Co-published with John Wiley, New York, USA.
[16] S. Hu and N.S. Papageorgiou, Hand Book of Multivalued Analysis, Vol.1, Theory, Kluwer Academic Publishers, Dordrecht, Boston, London 1997.
[17] M. Kisielewicz, M. Michta and J. Motyl, Set Valued Approach to Stochastic Control (I): Existence and Regularity Properties, Dynamic Systems and Applications 12 (2003), 405-432.
[18] M. Kisielewicz, M. Michta and J. Motyl, Set Valued Approach to Stochastic Control (II): Viability and Semimartingale Issues, Dynamic Systems and Applications 12 (2003), 433-466.