Minimax theorems without changeless proportion
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 23 (2003) no. 1, pp. 55-92.

Voir la notice de l'article provenant de la source Library of Science

The so-called minimax theorem means that if X and Y are two sets, and f and g are two real-valued functions defined on X×Y, then under some conditions the following inequality holds:
Keywords: minimax theorems, t-convex functions, upward functions, jointly upward functions, X-quasiconcave sets
@article{DMDICO_2003_23_1_a5,
     author = {Chu, Liang-Ju and Tsai, Chi-Nan},
     title = {Minimax theorems without changeless proportion},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {55--92},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     zbl = {1052.49007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a5/}
}
TY  - JOUR
AU  - Chu, Liang-Ju
AU  - Tsai, Chi-Nan
TI  - Minimax theorems without changeless proportion
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2003
SP  - 55
EP  - 92
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a5/
LA  - en
ID  - DMDICO_2003_23_1_a5
ER  - 
%0 Journal Article
%A Chu, Liang-Ju
%A Tsai, Chi-Nan
%T Minimax theorems without changeless proportion
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2003
%P 55-92
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a5/
%G en
%F DMDICO_2003_23_1_a5
Chu, Liang-Ju; Tsai, Chi-Nan. Minimax theorems without changeless proportion. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 23 (2003) no. 1, pp. 55-92. http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a5/

[1] F.E. Browder, Coincidence theorems, minimax theorems, and variational inequalities, Contemp. Math. 26 (1984), 67-80.

[2] L.J. Chu, Unified approaches to nonlinear optimization, Optimization 46 (1999), 25-60.

[3] K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 42-47.

[4] M.A. Geraghty and B.L. Lin, On a minimax theorem of Terkelsen, Bull. Inst. Math. Acad. Sinica. 11 (1983), 343-347.

[5] M.A. Geraghty and B.L. Lin, Topological minimax theorems, Proc. AMS 91 (1984), 377-380.

[6] B.L. Lin and F.S. Yu, A two functions minimax theorem, Acta Math. Hungar. 83 (1-2) (1999), 115-123.

[7] S. Simons, On Terkelsen minimax theorems, Bull. Inst. Math. Acad. Sinica. 18 (1990), 35-39.

[8] F. Terkelsen, Some minimax theorems, Math. Scand. 31 (1972), 405-413.

[9] M. Sion, On general minimax theorem, Pacific J. Math. 8 (1958), 171-176.