Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2003_23_1_a2, author = {Sadowski, Antoni}, title = {On the {Picard} problem for hyperbolic differential equations in {Banach} spaces}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {31--37}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2003}, zbl = {1053.35081}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a2/} }
TY - JOUR AU - Sadowski, Antoni TI - On the Picard problem for hyperbolic differential equations in Banach spaces JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2003 SP - 31 EP - 37 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a2/ LA - en ID - DMDICO_2003_23_1_a2 ER -
%0 Journal Article %A Sadowski, Antoni %T On the Picard problem for hyperbolic differential equations in Banach spaces %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2003 %P 31-37 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a2/ %G en %F DMDICO_2003_23_1_a2
Sadowski, Antoni. On the Picard problem for hyperbolic differential equations in Banach spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 23 (2003) no. 1, pp. 31-37. http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a2/
[1] A. Ambrosetti, Un teorema di essistenza per le equazioni differenziali nagli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360.
[2] K. Goebel, W. Rzymowski, An existence theorem for the equations x' = f(t,x) in Banach space, Bull. Acad. Polon. Sci., Sér. Sci. Math. 18 (1970), 367-370.
[3] P. Negrini, Sul problema di Darboux negli spazi di Banach, Bolletino U.M.I. (5) 17-A (1980), 156-160.
[4] B. Rzepecki, Measure of Non-Compactness and Krasnoselskii's Fixed Point Theorem, Bull. Acad. Polon. Sci., Sér. Sci. Math. 24 (1976), 861-866.
[5] B. Rzepecki, On the existence of solution of the Darboux problem for the hyperbolic partial differential equations in Banach Spaces, Rend. Sem. Mat. Univ. Padova 76 (1986).
[6] B.N. Sadovskii, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 86-144.