Some applications of Girsanov's theorem to the theory of stochastic differential inclusions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 23 (2003) no. 1, pp. 21-29 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

The Girsanov's theorem is useful as well in the general theory of stochastic analysis as well in its applications. We show here that it can be also applied to the theory of stochastic differential inclusions. In particular, we obtain some special properties of sets of weak solutions to some type of these inclusions.
Keywords: stochastic process, Girsanov’s theorem, stochastic differential inclusion, weak solution, Brownian motion
@article{DMDICO_2003_23_1_a1,
     author = {Kisielewicz, Micha},
     title = {Some applications of {Girsanov's} theorem to the theory of stochastic differential inclusions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {21--29},
     year = {2003},
     volume = {23},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a1/}
}
TY  - JOUR
AU  - Kisielewicz, Micha
TI  - Some applications of Girsanov's theorem to the theory of stochastic differential inclusions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2003
SP  - 21
EP  - 29
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a1/
LA  - en
ID  - DMDICO_2003_23_1_a1
ER  - 
%0 Journal Article
%A Kisielewicz, Micha
%T Some applications of Girsanov's theorem to the theory of stochastic differential inclusions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2003
%P 21-29
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a1/
%G en
%F DMDICO_2003_23_1_a1
Kisielewicz, Micha. Some applications of Girsanov's theorem to the theory of stochastic differential inclusions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 23 (2003) no. 1, pp. 21-29. http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a1/

[1] F. Hiai, Multivalued stochastic integrals and stochastic inclusions, not published.

[2] M. Kisielewicz, Set-valued stochastic integral and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800.

[3] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ. Dordrecht, Boston, London 1991.

[4] B. Øksendal, Stochastic Differential Equations, Springer Verlag, Berlin, Heildelberg 1998.

[5] Ph. Proter, Stochastic Integration and Differential Equations, Springer Verlag, Berlin, Heidelberg 1990.