Variational inequalities in noncompact nonconvex regions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 23 (2003) no. 1, pp. 5-19.

Voir la notice de l'article provenant de la source Library of Science

In this paper, a general existence theorem on the generalized variational inequality problem GVI(T,C,ϕ) is derived by using our new versions of Nikaidô's coincidence theorem, for the case where the region C is noncompact and nonconvex, but merely is a nearly convex set. Equipped with a kind of V₀-Karamardian condition, this general existence theorem contains some existing ones as special cases. Based on a Saigal condition, we also modify the main theorem to obtain another existence theorem on GVI(T,C,ϕ), which generalizes a result of Fang and Peterson.
Keywords: Nikaidô's coincidence theorem, variational inequality, nearly convex, V₀-Karamardian condition, Saigal condition, acyclic multifunction, algebraic interior, bounding points
@article{DMDICO_2003_23_1_a0,
     author = {Lin, Ching-Yan and Chu, Liang-Ju},
     title = {Variational inequalities in noncompact nonconvex regions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     zbl = {1054.47054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a0/}
}
TY  - JOUR
AU  - Lin, Ching-Yan
AU  - Chu, Liang-Ju
TI  - Variational inequalities in noncompact nonconvex regions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2003
SP  - 5
EP  - 19
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a0/
LA  - en
ID  - DMDICO_2003_23_1_a0
ER  - 
%0 Journal Article
%A Lin, Ching-Yan
%A Chu, Liang-Ju
%T Variational inequalities in noncompact nonconvex regions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2003
%P 5-19
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a0/
%G en
%F DMDICO_2003_23_1_a0
Lin, Ching-Yan; Chu, Liang-Ju. Variational inequalities in noncompact nonconvex regions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 23 (2003) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a0/

[1] E.G. Begle, Locally connected spaces and generalized manifolds, Amer. Math. J. 64 (1942), 553-574.

[2] E.G. Begle, The Vietoris mapping theorem for bicompact space, Ann. Math. 51 (1950), 534-543.

[3] E.G. Begle, A fixed point theorem, Ann. Math. 51 (1950), 544-550.

[4] F.E. Browder, Coincidence theorems, minimax theorems, and variational inequalities, Contemp. Math. 26 (1984), 67-80.

[5] D. Chan and J.S. Pang, The generalized quasi-variational inequality problem, Math. Oper. Res. 7 (1982), 211-222.

[6] L.J. Chu and C.Y. Lin, New versions of Nikaidô's coincidence theorem, Discuss. Math. DICO 22 (2002), 79-95.

[7] S.C. Fang and E.L. Peterson, Generalized variational inequalities, J. Optim. Th. Appl. 38 (3) (1982), 363-383.

[8] H. Halkin, Finite convexity in infinite-dimensional spaces, Proc. of the Colloquium on Convexity, Copenhagen (1965), W. Fenchel (ed.), Copenhagen (1967), 126-131.

[9] G. Isac, Complementarity problems, Lecture Notes in Math. 1528, Springer-Verlag, New York, (1992).

[10] S. Karamardian, The complementarity problem, Math. Program. 2 (1972), 107-129.

[11] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein beweis des fixpunktsatzes fur n-dimensionale simplexe, Fundamenta Math. 14 (1929) 132-137.

[12] L.J. Lin, Pre-Vector variational inequalities, Bull. Australian Math. Soc. 53 (1995), 63-70.

[13] G.J. Minty, On the maximal domain of a monotone function, Michigan Math. J. 8 (1961), 135-137.

[14] H. Nikaidô, Coincidence and some systems of inequalities, J. Math. Soc., Japan 11 (1959), 354-373.

[15] R.T. Rockafellar, On the virtual convexity of the domain and range of a nonlinear maximal monotone operator, Math. Ann. 185 (1970), 81-90.

[16] R. Saigal, Extension of the generalized complemetarity problem, Math. of Oper. Res. 1 (3) (1976), 260-266.