Best approximations, fixed points and parametric projections
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 2, pp. 243-260.

Voir la notice de l'article provenant de la source Library of Science

If f is a continuous seminorm, we prove two f-best approximation theorems for functions Φ not necessarily continuous as a consequence of our version of Glebov's fixed point theorem. Moreover, we obtain another fixed point theorem that improves a recent result of [4]. In the last section, we study continuity-type properties of set valued parametric projections and our results improve recent theorems due to Mabizela [11].
Keywords: fixed point, parametric projection, best approximation, upper semicontinuous, partially closed graph, f-approximatively compact, Oshman space
@article{DMDICO_2002_22_2_a5,
     author = {Cardinali, Tiziana},
     title = {Best approximations, fixed points and parametric projections},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {243--260},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     zbl = {1029.41016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a5/}
}
TY  - JOUR
AU  - Cardinali, Tiziana
TI  - Best approximations, fixed points and parametric projections
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2002
SP  - 243
EP  - 260
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a5/
LA  - en
ID  - DMDICO_2002_22_2_a5
ER  - 
%0 Journal Article
%A Cardinali, Tiziana
%T Best approximations, fixed points and parametric projections
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2002
%P 243-260
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a5/
%G en
%F DMDICO_2002_22_2_a5
Cardinali, Tiziana. Best approximations, fixed points and parametric projections. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 2, pp. 243-260. http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a5/

[1] B. Brosowsky and F.N. Deutsch, Radial continuity of valued metric projections, J. Approx. Theory 11 (1974), 236-253.

[2] B. Brosowsky, F.N. Deutsch and G. Nurnberger, Parametric approximation, J. Approx. Theory 29 (1980), 261-277.

[3] T. Cardinali and F. Papalini, Sull'esistenza di punti fissi per multifunzioni a grafo debolmente chiuso, Riv. Mat. Univ. Parma (4) 17 (1991), 59-67.

[4] T. Cardinali and F. Papalini, Fixed point theorems for multifunctions in topological vector spaces, J. Math. Anal. Appl. 186 (3) (1994), 769-777.

[5] F. Deutsch, Theory of best approximation in normed linear spaces, Mimeographed notes, 1972.

[6] K. Fan, Extensions of two fixed point theorems of F.E. Browder, Math. Z. 112 (1969), 234-240.

[7] N.I. Glebov, On a generalization of the Kakutani fixed point theorem, Soviet Math. Dokl. 10 (1969), 446-448.

[8] P. Govindarajulu and D.V. Pai, On properties of sets related to f-projections, J. Math. Anal. Appl. 73 (1980), 457-465.

[9] G. Köthe, Topological vector spaces (I), Springer-Verlag, Berlin, Heidelberg, New York 1969.

[10] T.C. Lin, A note on a theorem of Ky Fan, Canad. Math. Bull. 22 (1979), 513-515.

[11] S. Mabizela, Upper semicontinuity of parametric projection, Set Valued Analysis 4 (1996), 315-325.

[12] T.D. Narang, On f-best approximation in topological spaces, Archivum Mathematicum, Brno 21 (4) (1985), 229-234.

[13] T.D. Narang, A note of f-best approximation in reflexive Banach space, Matem. Bech. 37 (1985), 411-413.

[14] E.V. Oshman, On the continuity of metric projection in Banach space, Math. USSR Sb. 9 (1969), 171-182.

[15] S. Reich, Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl. 62 (1978), 104-113.

[16] V.M. Seghal and S.P. Singh, A theorem on the minimization of a condensing multifunction and fixed points, J. Math. Anal. Appl. 107 (1985), 96-102.

[17] I. Singer, The theory of best approximation and functional analysis, Regional Conference Series in Applied Math., Philadelphia 1974.

[18] C. Waters, Ph. D. thesis, Univ. of Wyoming 1984.

[19] E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag 1990.

[20] E. Zeidler, Variational methods and optimization III, Springer-Verlag 1990.