Controllability theorem for nonlinear dynamical systems
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 2, pp. 225-232.

Voir la notice de l'article provenant de la source Library of Science

Some sufficient conditions for controllability of nonlinear systems described by differential equation ẋ = f(t,x(t),u(t)) are given.
Keywords: differential equation, differential inclusions, controllability, boundary value problem
@article{DMDICO_2002_22_2_a3,
     author = {Kisielewicz, Micha{\l}},
     title = {Controllability theorem for nonlinear dynamical systems},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {225--232},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     zbl = {1042.93008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a3/}
}
TY  - JOUR
AU  - Kisielewicz, Michał
TI  - Controllability theorem for nonlinear dynamical systems
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2002
SP  - 225
EP  - 232
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a3/
LA  - en
ID  - DMDICO_2002_22_2_a3
ER  - 
%0 Journal Article
%A Kisielewicz, Michał
%T Controllability theorem for nonlinear dynamical systems
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2002
%P 225-232
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a3/
%G en
%F DMDICO_2002_22_2_a3
Kisielewicz, Michał. Controllability theorem for nonlinear dynamical systems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 2, pp. 225-232. http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a3/

[1] C.J. Himmelberg, Measurable relations, Fund. Math., 87 (1975), 53-72.

[2] M. Kisielewicz, Some remarks on boundary value problem for differential inclusions, Discuss. Math. Differ. Incl., 17 (1997), 43-49.

[3] M. Kisielewicz, Differential Inclusions and Optimal Control, PWN - Kluwer Acad. Publ. (1991).