Controllability theorem for nonlinear dynamical systems
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 2, pp. 225-232
Cet article a éte moissonné depuis la source Library of Science
Some sufficient conditions for controllability of nonlinear systems described by differential equation ẋ = f(t,x(t),u(t)) are given.
Keywords:
differential equation, differential inclusions, controllability, boundary value problem
@article{DMDICO_2002_22_2_a3,
author = {Kisielewicz, Micha{\l}},
title = {Controllability theorem for nonlinear dynamical systems},
journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
pages = {225--232},
year = {2002},
volume = {22},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a3/}
}
TY - JOUR AU - Kisielewicz, Michał TI - Controllability theorem for nonlinear dynamical systems JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2002 SP - 225 EP - 232 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a3/ LA - en ID - DMDICO_2002_22_2_a3 ER -
Kisielewicz, Michał. Controllability theorem for nonlinear dynamical systems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 2, pp. 225-232. http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a3/
[1] C.J. Himmelberg, Measurable relations, Fund. Math., 87 (1975), 53-72.
[2] M. Kisielewicz, Some remarks on boundary value problem for differential inclusions, Discuss. Math. Differ. Incl., 17 (1997), 43-49.
[3] M. Kisielewicz, Differential Inclusions and Optimal Control, PWN - Kluwer Acad. Publ. (1991).