A class of retracts in $L^{p}$ with some applications to differential inclusion
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 2, pp. 213-224.

Voir la notice de l'article provenant de la source Library of Science

@article{DMDICO_2002_22_2_a2,
     author = {Bartuzel, Grzegorz and Fryszkowski, Andrzej},
     title = {A class of retracts in $L^{p}$ with some applications to differential inclusion},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {213--224},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     zbl = {1041.35095},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a2/}
}
TY  - JOUR
AU  - Bartuzel, Grzegorz
AU  - Fryszkowski, Andrzej
TI  - A class of retracts in $L^{p}$ with some applications to differential inclusion
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2002
SP  - 213
EP  - 224
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a2/
LA  - en
ID  - DMDICO_2002_22_2_a2
ER  - 
%0 Journal Article
%A Bartuzel, Grzegorz
%A Fryszkowski, Andrzej
%T A class of retracts in $L^{p}$ with some applications to differential inclusion
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2002
%P 213-224
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a2/
%G en
%F DMDICO_2002_22_2_a2
Bartuzel, Grzegorz; Fryszkowski, Andrzej. A class of retracts in $L^{p}$ with some applications to differential inclusion. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 2, pp. 213-224. http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a2/

[1] G. Bartuzel and A. Fryszkowski, On existence of solutions for inclusions Δu ∈ F(x,∇u), in: R. März, ed., Proc. of the Fourth Conf. on Numerical Treatment of Ordinary Differential Equations, pages 1-7, Sektion Mathematik der Humboldt Universität zu Berlin, Berlin, Sep. 1984.

[2] G. Bartuzel and A. Fryszkowski, Stability of the principal eigenvalue of the Schrödinger type problems for differential inclusions, Toplological Methods in Nonlinear Analysis 16 (1) (2000), 181-194.

[3] G. Bartuzel and A. Fryszkowski, A topological property of the solution set to the Schrödinger differential inclusions, Demomstratio Mathematicae 25 (3) (1995), 411-433.

[4] F.D. Blasi and G. Pianigiani, Solution sets of boundary value problems for nonconvex differential inclusion, Oct. 1992, preprint n 115.

[5] A. Bressan, A. Cellina and A. Fryszkowski, A class of absolute retracts in spaces of integrable functions, Proc. AMS 112 (1991), 413-418.

[6] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1986) 163-174.

[7] N. Dunford and J.T. Schwartz, Linear Operators, Wiley, New York 1958.

[8] Y. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators, Operator Theory, Advances and Applications, Vol. 89, Birkhäuser, Basel, Boston, Berlin 1996.

[9] A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), 163-174.

[10] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit Besonderer Berücksichtigung der Angewendungsgebiete, Springer, Berlin 1989.

[11] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. 13 (1965) 397-403.