Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2002_22_2_a2, author = {Bartuzel, Grzegorz and Fryszkowski, Andrzej}, title = {A class of retracts in $L^{p}$ with some applications to differential inclusion}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {213--224}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2002}, zbl = {1041.35095}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a2/} }
TY - JOUR AU - Bartuzel, Grzegorz AU - Fryszkowski, Andrzej TI - A class of retracts in $L^{p}$ with some applications to differential inclusion JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2002 SP - 213 EP - 224 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a2/ LA - en ID - DMDICO_2002_22_2_a2 ER -
%0 Journal Article %A Bartuzel, Grzegorz %A Fryszkowski, Andrzej %T A class of retracts in $L^{p}$ with some applications to differential inclusion %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2002 %P 213-224 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a2/ %G en %F DMDICO_2002_22_2_a2
Bartuzel, Grzegorz; Fryszkowski, Andrzej. A class of retracts in $L^{p}$ with some applications to differential inclusion. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 2, pp. 213-224. http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a2/
[1] G. Bartuzel and A. Fryszkowski, On existence of solutions for inclusions Δu ∈ F(x,∇u), in: R. März, ed., Proc. of the Fourth Conf. on Numerical Treatment of Ordinary Differential Equations, pages 1-7, Sektion Mathematik der Humboldt Universität zu Berlin, Berlin, Sep. 1984.
[2] G. Bartuzel and A. Fryszkowski, Stability of the principal eigenvalue of the Schrödinger type problems for differential inclusions, Toplological Methods in Nonlinear Analysis 16 (1) (2000), 181-194.
[3] G. Bartuzel and A. Fryszkowski, A topological property of the solution set to the Schrödinger differential inclusions, Demomstratio Mathematicae 25 (3) (1995), 411-433.
[4] F.D. Blasi and G. Pianigiani, Solution sets of boundary value problems for nonconvex differential inclusion, Oct. 1992, preprint n 115.
[5] A. Bressan, A. Cellina and A. Fryszkowski, A class of absolute retracts in spaces of integrable functions, Proc. AMS 112 (1991), 413-418.
[6] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1986) 163-174.
[7] N. Dunford and J.T. Schwartz, Linear Operators, Wiley, New York 1958.
[8] Y. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators, Operator Theory, Advances and Applications, Vol. 89, Birkhäuser, Basel, Boston, Berlin 1996.
[9] A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), 163-174.
[10] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit Besonderer Berücksichtigung der Angewendungsgebiete, Springer, Berlin 1989.
[11] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. 13 (1965) 397-403.