Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2002_22_1_a5, author = {Cegielski, Andrzej and Dylewski, Robert}, title = {Selection strategies in projection methods for convex minimization problems}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {97--123}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2002}, zbl = {1175.90310}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a5/} }
TY - JOUR AU - Cegielski, Andrzej AU - Dylewski, Robert TI - Selection strategies in projection methods for convex minimization problems JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2002 SP - 97 EP - 123 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a5/ LA - en ID - DMDICO_2002_22_1_a5 ER -
%0 Journal Article %A Cegielski, Andrzej %A Dylewski, Robert %T Selection strategies in projection methods for convex minimization problems %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2002 %P 97-123 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a5/ %G en %F DMDICO_2002_22_1_a5
Cegielski, Andrzej; Dylewski, Robert. Selection strategies in projection methods for convex minimization problems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 1, pp. 97-123. http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a5/
[1] A. Cegielski, Projection onto an acute cone and convex feasibility problems, J. Henry and J.-P. Yvon (eds.), Lecture Notes in Control and Information Science 197, Springer- Verlag, London (1994), 187-194.
[2] A. Cegielski, A method of projection onto an acute cone with level control in convex minimization, Mathematical Programming 85 (1999), 469-490.
[3] A. Cegielski, Obtuse cones and Gram matrices with non-negative inverse, Linear Algebra and its Applications 335 (2001), 167-181.
[4] A. Cegielski and R. Dylewski, Residual selection in a projection method for convex minimization problems, (submitted).
[5] J. Charalambous and A.R. Conn, An efficient method to solve the minimax problem directly, SIAM J. Num. Anal. 15 (1978), 162-187.
[6] R. Dylewski, Numerical behavior of the method of projection onto an acute cone with level control in convex minimization, Discuss. Math. Differential Inclusions, Control and Optimization 20 (2000), 147-158.
[7] S. Kim, H. Ahn and S.-C. Cho, Variable target value subgradient method, Mathematical Programming 49 (1991), 359-369.
[8] K.C. Kiwiel, The efficiency of subgradient projection methods for convex optimization, part I: General level methods, SIAM J. Control and Optimization 34 (1996), 660-676.
[9] K.C. Kiwiel, The efficiency of subgradient projection methods for convex optimization, part II: Implementations and extensions, SIAM J. Control and Optimization 34 (1996), 677-697.
[10] K.C. Kiwiel, Monotone Gram matrices and deepest surrogate inequalities in accelerated relaxation methods for convex feasibility problems, Linear Algebra and Applications 252 (1997), 27-33.
[11] C. Lemaréchal and R. Mifflin, A set of nonsmooth optimization test problems, Nonsmooth Optimization, C. Lemarechal, R. Mifflin, (eds.), Pergamon Press, Oxford 1978, 151-165.
[12] C. Lemaréchal, A.S. Nemirovskii and Yu.E. Nesterov, New variants of bundle methods, Math. Progr. 69 (1995), 111-147.
[13] N.Z. Shor, Minimization Methods for Non-differentiable Functions, Springer-Verlag, Berlin 1985.
[14] H. Schramm and J. Zowe, A version of the bundle idea for minimizing of a nonsmooth function: conceptual idea, convergence analysis, numerical results, SIAM J. Control and Optimization 2 (1992), 121-152.
[15] M.J. Todd, Some remarks on the relaxation method for linear inequalities,. Technical Report 419 (1979), Cornell University.