Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2002_22_1_a4, author = {Chu, Liang-Ju and Lin, Ching-Yan}, title = {New versions on {Nikaid\^o's} coincidence theorem}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {79--95}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2002}, zbl = {1039.47035}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a4/} }
TY - JOUR AU - Chu, Liang-Ju AU - Lin, Ching-Yan TI - New versions on Nikaidô's coincidence theorem JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2002 SP - 79 EP - 95 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a4/ LA - en ID - DMDICO_2002_22_1_a4 ER -
%0 Journal Article %A Chu, Liang-Ju %A Lin, Ching-Yan %T New versions on Nikaidô's coincidence theorem %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2002 %P 79-95 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a4/ %G en %F DMDICO_2002_22_1_a4
Chu, Liang-Ju; Lin, Ching-Yan. New versions on Nikaidô's coincidence theorem. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 1, pp. 79-95. http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a4/
[1] J. Andres, L. Górniewicz and J. Jezierski, Noncompact version of the multivalued Nielsen theory, Lecture Notes in Nonlinear Analysis, Nicholas Copernicus University 2 (1998), 33-50.
[2] E.G. Begle, Locally connected spaces and generalized manifolds, Amer. Math. J. 64 (1942), 553-574.
[3] E.G. Begle, The Vietoris mapping theorem for bicompact space, Ann. of Math. 51 (1950), 534-543.
[4] E.G. Begle, A fixed point theorem, Ann. of Math. 51 (1950), 544-550.
[5] F.E. Browder, Coincidence theorems, minimax theorems, and variational inequalities, Contemp. Math. 26 (1984), 67-80.
[6] T.H. Chang and C.L. Yen, KKM properties and fixed point theorem, J. Math. Anal. Appl. 203 (1996), 224-235.
[7] L.J. Chu, On Fan's minimax inequality, J. Math. Anal. Appl. 201 (1996), 103-113.
[8] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci., U.S.A. 38 (1952), 121-126.
[9] K. Fan, A generalization of Tychnoff's fixed point theorem, Math. Ann. 142 (1961), 305-310.
[10] G. Fournier and L. Górniewicz, The Lefschetz fixed point theorem for multivalued maps of non-metrizable spaces, Fundamenta Math. XCII (1976), 213-222.
[11] G. Fournier and L. Górniewicz, The Lefschetz fixed point theorem for some non-compact multivalued maps, Fundamenta Math. 94 (1976), 245-254.
[12] I.L. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174.
[13] L. Górniewicz, Homological methods in fixed-point theory of multivalued maps, Dins Math. 129 (1976), Warszawa.
[14] L. Górniewicz, A Lefschetz-type fixed point theorem, Fundamenta Math. 88 (1975), 103-115.
[15] A. Granas and F.-C. Liu, Coincidences for set-valued maps and minimax inequalities, J. Math. Pures et Appl. 65 (1986), 119-148.
[16] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein beweis des fixpunktsatzes fur n-dimensionale simplexe, Fundamenta Math. 14 (1929), 132-137.
[17] L.J. Lin and Z.T. Yu, Fixed points theorems of KKM-type maps, Nonlinear Anal. 38 (1999), 265-275.
[18] W.S. Massey, Singular Homology Theory, Springer-Verlag, New York 1980.
[19] H. Nikaidô, Coincidence and some systems of inequalities, J. Math. Soc. Japan 11 (1959), 354-373.
[20] S. Park, Coincidences of composites of admissible u.s.c. maps and applications, C.R. Math. Acad. Sci. Canada 15 (1993), 125-130.
[21] S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994), 493-519.
[22] X. Wu and S. Shen, A futher generalization of Yannelis-Prabhakar's continuous selection theorem and its applications, J. Math. Anal. Appl. 197 (1996), 61-74.