On the existence of viable solutions for a class of second order differential inclusions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 1, pp. 67-78.

Voir la notice de l'article provenant de la source Library of Science

We prove the existence of viable solutions to the Cauchy problem x” ∈ F(x,x'), x(0) = x₀, x'(0) = y₀, where F is a set-valued map defined on a locally compact set M ⊂ R^2n, contained in the Fréchet subdifferential of a ϕ-convex function of order two.
Keywords: viable solutions, ϕ-monotone operators, differential inclusions
@article{DMDICO_2002_22_1_a3,
     author = {Cernea, Aurelian},
     title = {On the existence of viable solutions for a class of second order differential inclusions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {67--78},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     zbl = {1039.34009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a3/}
}
TY  - JOUR
AU  - Cernea, Aurelian
TI  - On the existence of viable solutions for a class of second order differential inclusions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2002
SP  - 67
EP  - 78
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a3/
LA  - en
ID  - DMDICO_2002_22_1_a3
ER  - 
%0 Journal Article
%A Cernea, Aurelian
%T On the existence of viable solutions for a class of second order differential inclusions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2002
%P 67-78
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a3/
%G en
%F DMDICO_2002_22_1_a3
Cernea, Aurelian. On the existence of viable solutions for a class of second order differential inclusions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 1, pp. 67-78. http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a3/

[1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin 1984.

[2] A. Auslender and J. Mechler, Second order viability problems for differential inclusions, J. Math. Anal. Appl. 181 (1984), 205-218.

[3] H. Brezis, Analyse fonctionelle, théorie et applications, Masson, Paris 1983.

[4] T. Cardinali, G. Colombo, F. Papalini and M. Tosques, On a class of evolution equations without convexity, Nonlinear Anal. 28 (1996), 217-234.

[5] A. Cernea, Existence of viable solutions for a class of nonconvex differential inclusions, J. Convex Anal., submitted.

[6] B. Cornet and B. Haddad, Théoreme de viabilité pour inclusions differentielles du second order, Israel J. Math. 57 (1987), 225-238.

[7] M. Degiovanni, A. Marino and M. Tosques, Evolution equations with lack of convexity, Nonlinear Anal. 9 (1995), 1401-1443.

[8] T.X.D. Ha and M. Marques, Nonconvex second order differential inclusions with memory, Set-valued Anal. 5 (1995), 71-86.

[9] V. Lupulescu, Existence of solutions to a class of second order differential inclusions, Cadernos de Matematica, Aveiro Univ., CM01/I-11.

[10] L. Marco and J.A. Murillo, Viability theorems for higher-order differential inclusions, Set-valued Anal. 6 (1998), 21-37.

[11] M. Tosques, Quasi-autonomus parabolic evolution equations associated with a class of non linear operators, Ricerche Mat. 38 (1989), 63-92.