Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2002_22_1_a1, author = {Bader, Ralf and Gel'man, Boris and Kamenskii, Mikhail and Obukhovskii, Valeri}, title = {On the topological dimension of the solutions sets for some classes of operator and differential inclusions}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {17--32}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2002}, zbl = {1041.47031}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a1/} }
TY - JOUR AU - Bader, Ralf AU - Gel'man, Boris AU - Kamenskii, Mikhail AU - Obukhovskii, Valeri TI - On the topological dimension of the solutions sets for some classes of operator and differential inclusions JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2002 SP - 17 EP - 32 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a1/ LA - en ID - DMDICO_2002_22_1_a1 ER -
%0 Journal Article %A Bader, Ralf %A Gel'man, Boris %A Kamenskii, Mikhail %A Obukhovskii, Valeri %T On the topological dimension of the solutions sets for some classes of operator and differential inclusions %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2002 %P 17-32 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a1/ %G en %F DMDICO_2002_22_1_a1
Bader, Ralf; Gel'man, Boris; Kamenskii, Mikhail; Obukhovskii, Valeri. On the topological dimension of the solutions sets for some classes of operator and differential inclusions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 1, pp. 17-32. http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a1/
[1] P.S. Aleksandrov and B.A. Pasynkov, Introduction to Dimension Theory, Nauka, Moscow 1973 (in Russian).
[2] J.P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1984.
[3] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis and V.V. Obukhovskii, Topological methods in the fixed-point theory of multivalued maps, Russian Math. Surveys 35 (1980), 65-143.
[4] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis and V.V. Obukhovskii, Multivalued Mappings, J. Sov. Math. 24 (1984), 719-791.
[5] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis and V.V. Obukhovskii, Introduction to the Theory of Multivalued Maps, Voronezh Gos. Univ., Voronezh 1986 (in Russian).
[6] J.F. Couchouron, M. Kamenski, A Unified Topological Point of View for Integro-Differential Inclusions, Differential Inclusions and Opt. Control (J. Andres, L. Górniewicz, and P. Nistri eds.), Lecture Notes in Nonlinear Anal. 2 (1998), 123-137.
[7] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lect. Notes in Math. 580, Springer-Verlag, Berlin-Heidelberg-New York 1977.
[8] R. Dragoni, J.W. Macki, P. Nistri and P. Zecca, Solution Sets of Differential Equations in Abstract Spaces, Pitman Res. Notes in Math., 342, Longman 1996.
[9] Z. Dzedzej and B. Gelman, Dimension of a set of solutions for differential inlcusions, Demonstratio Math. 26 (1993), 149-158.
[10] R. Engelking, Dimension Theory, PWN, Warszawa 1978.
[11] B.D. Gelman, Topological properties of the set of fixed points of a multivalued map, Mat. Sbornik 188 (1997), 33-56 (in Russian); English transl.: Sbornik: Mathem. 188 (1997), 1761-1782.
[12] B.D. Gelman, On topological dimension of a set of solutions of functional inclusions, Differential Inclusions and Opt. Control (J. Andres, L. Górniewicz and P. Nistri eds.), Lecture Notes in Nonlinear Anal. 2 (1998), 163-178.
[13] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer Acad. Publ. Dordrecht-Boston-London 1997.
[14] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser. in Nonlinear Analysis and Appl. 7, Walter de Gruyter, Berlin-New York 2001.
[15] M. Kisielewicz, Differential Inclusions and Optimal Control, PWN, Warszawa, Kluwer Academic Publishers, Dordrecht-Boston-London 1991.
[16] M.A. Krasnoselskii, P.P. Zabreiko, E.I. Pustylnik and P.E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Noordhoff International Publishing, Leyden 1976.
[17] E. Michael, Continuous selections I, Ann. Math. 63 (1956), 361-382.
[18] B. Ricceri, On the topological dimension of the solution set of a class of nonlinear equations, C.R. Acad. Sci. Paris Ser. I Math. 325 (1997), 65-70.
[19] J. Saint Raymond, Points fixes des multiapplications a valeurs convex, C.R. Acad. Sci. Paris Ser. I Math. 298 (1984), 71-74.