Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2001_21_2_a6, author = {Benchohra, Mouffak and G\'orniewicz, Lech and Ntouyas, Sotiris}, title = {Controllability on infinite time horizon for first and second order functional differential inclusions in {Banach} spaces}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {261--282}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2001}, zbl = {1020.93004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a6/} }
TY - JOUR AU - Benchohra, Mouffak AU - Górniewicz, Lech AU - Ntouyas, Sotiris TI - Controllability on infinite time horizon for first and second order functional differential inclusions in Banach spaces JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2001 SP - 261 EP - 282 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a6/ LA - en ID - DMDICO_2001_21_2_a6 ER -
%0 Journal Article %A Benchohra, Mouffak %A Górniewicz, Lech %A Ntouyas, Sotiris %T Controllability on infinite time horizon for first and second order functional differential inclusions in Banach spaces %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2001 %P 261-282 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a6/ %G en %F DMDICO_2001_21_2_a6
Benchohra, Mouffak; Górniewicz, Lech; Ntouyas, Sotiris. Controllability on infinite time horizon for first and second order functional differential inclusions in Banach spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 261-282. http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a6/
[1] K. Balachandran, P. Balasubramaniam and J.P. Dauer, Controllability of nonlinear integrodifferential systems in Banach space, J. Optim. Theory Appl. 84 (1995), 83-91.
[2] K. Balachandran, P. Balasubramaniam and J.P. Dauer, Local null controllability of nonlinear functional differential systems in Banach space, J. Optim. Theory Appl. 75 (1996), 61-75.
[3] M. Benchohra and S.K. Ntouyas, Controllability for functional differential and integrodifferential inclusions in Banach spaces, submitted.
[4] N. Carmichael and M.D. Quinn, An approash to nonlinear control problems using fixed point methods, degree theory and pseudo-inverses, Numerical Functional Analysis and Optimization 7 (1984-1985), 197-219.
[5] C. Corduneanu, Integral Equations and Applications, Cambridge Univ. Press, New York 1990.
[6] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin - New York 1992.
[7] J. Dugundji and A. Granas, Fixed Point Theory, Monografie Mat. PWN, Warsaw 1982.
[8] H.O. Fattorini, Ordinary differential equations in linear topological spaces, I, J. Differential Equations 5 (1968), 72-105.
[9] H.O. Fattorini, Ordinary differential equations in linear topological spaces, II, J. Differential Equations 6 (1969), 50-70.
[10] J.A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Univ. Press, New York 1985.
[11] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495, Kluwer Academic Publishers, Dordrecht 1999.
[12] L. Górniewicz, P. Nistri and V. Obukhovskii, Differential inclusions on proximate retracts of Hilbert spaces, International J. Nonlin. Diff. Eqn. TMA, 3 (1997), 13-26.
[13] S. Heikkila and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, New York 1994.
[14] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer, Dordrecht, Boston, London 1997.
[15] A. Lasota and Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.
[16] T.W. Ma, Topological degrees for set-valued compact vector fields in locally convex spaces, Diss. Math. 92 (1972), 1-43.
[17] M. Martelli, A Rothe's type theorem for non-compact acyclic-valued map, Boll. Un. Mat. Ital. 4 (3) (1975), 70-76.
[18] C.C. Travis and G.F. Webb, Second order differential equations in Banach spaces, Proc. Int. Symp. on Nonlinear Equations in Abstract Spaces, Academic Press, New York (1978), 331-361.
[19] C.C. Travis and G.F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Hungar. 32 (1978), 75-96.
[20] K. Yosida, Functional Analysis, 6th edn. Springer-Verlag, Berlin 1980.