Controllability on infinite time horizon for first and second order functional differential inclusions in Banach spaces
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 261-282.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we shall establish sufficient conditions for the controllability on semi-infinite intervals for first and second order functional differential inclusions in Banach spaces. We shall rely on a fixed point theorem due to Ma, which is an extension on locally convex topological spaces, of Schaefer's theorem. Moreover, by using the fixed point index arguments the implicit case is treated.
Keywords: controllability, mild solution, evolution, fixed point
@article{DMDICO_2001_21_2_a6,
     author = {Benchohra, Mouffak and G\'orniewicz, Lech and Ntouyas, Sotiris},
     title = {Controllability on infinite time horizon for first and second order functional differential inclusions in {Banach} spaces},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {261--282},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     zbl = {1020.93004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a6/}
}
TY  - JOUR
AU  - Benchohra, Mouffak
AU  - Górniewicz, Lech
AU  - Ntouyas, Sotiris
TI  - Controllability on infinite time horizon for first and second order functional differential inclusions in Banach spaces
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2001
SP  - 261
EP  - 282
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a6/
LA  - en
ID  - DMDICO_2001_21_2_a6
ER  - 
%0 Journal Article
%A Benchohra, Mouffak
%A Górniewicz, Lech
%A Ntouyas, Sotiris
%T Controllability on infinite time horizon for first and second order functional differential inclusions in Banach spaces
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2001
%P 261-282
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a6/
%G en
%F DMDICO_2001_21_2_a6
Benchohra, Mouffak; Górniewicz, Lech; Ntouyas, Sotiris. Controllability on infinite time horizon for first and second order functional differential inclusions in Banach spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 261-282. http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a6/

[1] K. Balachandran, P. Balasubramaniam and J.P. Dauer, Controllability of nonlinear integrodifferential systems in Banach space, J. Optim. Theory Appl. 84 (1995), 83-91.

[2] K. Balachandran, P. Balasubramaniam and J.P. Dauer, Local null controllability of nonlinear functional differential systems in Banach space, J. Optim. Theory Appl. 75 (1996), 61-75.

[3] M. Benchohra and S.K. Ntouyas, Controllability for functional differential and integrodifferential inclusions in Banach spaces, submitted.

[4] N. Carmichael and M.D. Quinn, An approash to nonlinear control problems using fixed point methods, degree theory and pseudo-inverses, Numerical Functional Analysis and Optimization 7 (1984-1985), 197-219.

[5] C. Corduneanu, Integral Equations and Applications, Cambridge Univ. Press, New York 1990.

[6] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin - New York 1992.

[7] J. Dugundji and A. Granas, Fixed Point Theory, Monografie Mat. PWN, Warsaw 1982.

[8] H.O. Fattorini, Ordinary differential equations in linear topological spaces, I, J. Differential Equations 5 (1968), 72-105.

[9] H.O. Fattorini, Ordinary differential equations in linear topological spaces, II, J. Differential Equations 6 (1969), 50-70.

[10] J.A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Univ. Press, New York 1985.

[11] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495, Kluwer Academic Publishers, Dordrecht 1999.

[12] L. Górniewicz, P. Nistri and V. Obukhovskii, Differential inclusions on proximate retracts of Hilbert spaces, International J. Nonlin. Diff. Eqn. TMA, 3 (1997), 13-26.

[13] S. Heikkila and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, New York 1994.

[14] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer, Dordrecht, Boston, London 1997.

[15] A. Lasota and Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.

[16] T.W. Ma, Topological degrees for set-valued compact vector fields in locally convex spaces, Diss. Math. 92 (1972), 1-43.

[17] M. Martelli, A Rothe's type theorem for non-compact acyclic-valued map, Boll. Un. Mat. Ital. 4 (3) (1975), 70-76.

[18] C.C. Travis and G.F. Webb, Second order differential equations in Banach spaces, Proc. Int. Symp. on Nonlinear Equations in Abstract Spaces, Academic Press, New York (1978), 331-361.

[19] C.C. Travis and G.F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Hungar. 32 (1978), 75-96.

[20] K. Yosida, Functional Analysis, 6th edn. Springer-Verlag, Berlin 1980.