Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2001_21_2_a3, author = {Gudovich, Anastasie and Kamenski, Mikhail and Nistri, Paolo}, title = {A {Tikhonov-type} theorem for abstract parabolic differential inclusions in {Banach} spaces}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {207--234}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2001}, zbl = {1011.34053}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a3/} }
TY - JOUR AU - Gudovich, Anastasie AU - Kamenski, Mikhail AU - Nistri, Paolo TI - A Tikhonov-type theorem for abstract parabolic differential inclusions in Banach spaces JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2001 SP - 207 EP - 234 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a3/ LA - en ID - DMDICO_2001_21_2_a3 ER -
%0 Journal Article %A Gudovich, Anastasie %A Kamenski, Mikhail %A Nistri, Paolo %T A Tikhonov-type theorem for abstract parabolic differential inclusions in Banach spaces %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2001 %P 207-234 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a3/ %G en %F DMDICO_2001_21_2_a3
Gudovich, Anastasie; Kamenski, Mikhail; Nistri, Paolo. A Tikhonov-type theorem for abstract parabolic differential inclusions in Banach spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 207-234. http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a3/
[1] A. Andreini, M. Kamenski and P. Nistri, A result on the singular perturbation theory for differential inclusions in Banach spaces, Topol. Methods in Nonlin. Anal. 15 (2000) 1-15.
[2] A. Cavallo, G. De Maria and P. Nistri, Some control problems solved via a sliding manifold approach, Diff. Eqns. and Dyn. Sys. 1 (1993), 215-230.
[3] J. Distel and Jr. Uhl, Vector measures, Mathematical Surveys n. 15, American Mathematical Society 1977.
[4] A. Dontchev, T.Z. Donchev and I. Slavov, A Tikhonov-type theorem for singularly perturbed differential inclusions, Nonlinear Analysis TMA 26 (1996), 1547-1554.
[5] A. Dontchev and V.M. Veliov, Singular perturbation in Mayer's problem for linear systems, SIAM J. Control Optim. 21 (1983), 566-581.
[6] M. Kamenskii and P. Nistri, Periodic solutions of a singularly perturbed systems of differential inclusions in Banach spaces, in: Set-Valued Mappings with Applications in Nonlinear Analysis, Series in Mathematical Analysis and Applications 4, Gordon and Breach Science Publishers, London 2001, 213-226.
[7] M. Krasnoselskii, P. Zabreiko, E. Pustyl'nik, and P. Sobolevski, Integral Operators in Spaces of Summable Functions, Noordhoff International Publishing, Leyden 1976.
[8] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer Verlag New York, Inc. 1983.
[9] V.M. Veliov, Differential inclusions with stable subinclusions, Nonlinear Analysis TMA 23 (1994), 1027-1038.
[10] V. Veliov, A generalization of the Tikhonov for singularly perturbed differential inclusions, J. Dyn. Contr. Syst. 3 (1997), 291-319.