A Tikhonov-type theorem for abstract parabolic differential inclusions in Banach spaces
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 207-234.

Voir la notice de l'article provenant de la source Library of Science

We consider a class of singularly perturbed systems of semilinear parabolic differential inclusions in infinite dimensional spaces. For such a class we prove a Tikhonov-type theorem for a suitably defined subset of the set of all solutions for ε ≥ 0, where ε is the perturbation parameter. Specifically, assuming the existence of a Lipschitz selector of the involved multivalued maps we can define a nonempty subset Z_L(ε) of the solution set of the singularly perturbed system. This subset is the set of the Hölder continuous solutions defined in [0,d], d > 0 with prescribed exponent and constant L. We show that Z_L(ε) is uppersemicontinuous at ε = 0 in the C[0,d]×C[δ,d] topology for any δ ∈ (0,d].
Keywords: singular perturbations, differential inclusions, analytic semigroups, multivalued compact operators, Lipschitz selections
@article{DMDICO_2001_21_2_a3,
     author = {Gudovich, Anastasie and Kamenski, Mikhail and Nistri, Paolo},
     title = {A {Tikhonov-type} theorem for abstract parabolic differential inclusions in {Banach} spaces},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {207--234},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     zbl = {1011.34053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a3/}
}
TY  - JOUR
AU  - Gudovich, Anastasie
AU  - Kamenski, Mikhail
AU  - Nistri, Paolo
TI  - A Tikhonov-type theorem for abstract parabolic differential inclusions in Banach spaces
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2001
SP  - 207
EP  - 234
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a3/
LA  - en
ID  - DMDICO_2001_21_2_a3
ER  - 
%0 Journal Article
%A Gudovich, Anastasie
%A Kamenski, Mikhail
%A Nistri, Paolo
%T A Tikhonov-type theorem for abstract parabolic differential inclusions in Banach spaces
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2001
%P 207-234
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a3/
%G en
%F DMDICO_2001_21_2_a3
Gudovich, Anastasie; Kamenski, Mikhail; Nistri, Paolo. A Tikhonov-type theorem for abstract parabolic differential inclusions in Banach spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 207-234. http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a3/

[1] A. Andreini, M. Kamenski and P. Nistri, A result on the singular perturbation theory for differential inclusions in Banach spaces, Topol. Methods in Nonlin. Anal. 15 (2000) 1-15.

[2] A. Cavallo, G. De Maria and P. Nistri, Some control problems solved via a sliding manifold approach, Diff. Eqns. and Dyn. Sys. 1 (1993), 215-230.

[3] J. Distel and Jr. Uhl, Vector measures, Mathematical Surveys n. 15, American Mathematical Society 1977.

[4] A. Dontchev, T.Z. Donchev and I. Slavov, A Tikhonov-type theorem for singularly perturbed differential inclusions, Nonlinear Analysis TMA 26 (1996), 1547-1554.

[5] A. Dontchev and V.M. Veliov, Singular perturbation in Mayer's problem for linear systems, SIAM J. Control Optim. 21 (1983), 566-581.

[6] M. Kamenskii and P. Nistri, Periodic solutions of a singularly perturbed systems of differential inclusions in Banach spaces, in: Set-Valued Mappings with Applications in Nonlinear Analysis, Series in Mathematical Analysis and Applications 4, Gordon and Breach Science Publishers, London 2001, 213-226.

[7] M. Krasnoselskii, P. Zabreiko, E. Pustyl'nik, and P. Sobolevski, Integral Operators in Spaces of Summable Functions, Noordhoff International Publishing, Leyden 1976.

[8] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer Verlag New York, Inc. 1983.

[9] V.M. Veliov, Differential inclusions with stable subinclusions, Nonlinear Analysis TMA 23 (1994), 1027-1038.

[10] V. Veliov, A generalization of the Tikhonov for singularly perturbed differential inclusions, J. Dyn. Contr. Syst. 3 (1997), 291-319.