Ball intersection model for Fejér zones of convex closed sets
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 1, pp. 51-79.

Voir la notice de l'article provenant de la source Library of Science

Strongly Fejér monotone mappings are widely used to solve convex problems by corresponding iterative methods. Here the maximal of such mappings with respect to set inclusion of the images are investigated. These mappings supply restriction zones for the successors of Fejér monotone iterative methods. The basic tool is the representation of the images by intersection of certain balls.
Keywords: set-valued mappings, Fejér monotone mappings, relaxations, central stretching, convex sets, ball intersections
@article{DMDICO_2001_21_1_a1,
     author = {Schott, Dieter},
     title = {Ball intersection model for {Fej\'er} zones of convex closed sets},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {51--79},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     zbl = {0989.65060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2001_21_1_a1/}
}
TY  - JOUR
AU  - Schott, Dieter
TI  - Ball intersection model for Fejér zones of convex closed sets
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2001
SP  - 51
EP  - 79
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2001_21_1_a1/
LA  - en
ID  - DMDICO_2001_21_1_a1
ER  - 
%0 Journal Article
%A Schott, Dieter
%T Ball intersection model for Fejér zones of convex closed sets
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2001
%P 51-79
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2001_21_1_a1/
%G en
%F DMDICO_2001_21_1_a1
Schott, Dieter. Ball intersection model for Fejér zones of convex closed sets. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 1, pp. 51-79. http://geodesic.mathdoc.fr/item/DMDICO_2001_21_1_a1/

[1] I.I. Eremin and V.D. Mazurov, Nestacionarnye Processy Programmirovanija, Nauka, Moskva 1979.

[2] J.-P. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Springer-Verlag, Berlin et. al. 1993.

[3] J.T. Marti, Konvexe Analysis, Birkhäuser Verlag, Basel 1977.

[4] R.T. Rockafellar, Convex Analysis, Princeton, New Jersey 1972.

[5] D. Schott, Iterative solution of convex problems by Fejér monotone methods, Numer. Funct. Anal. Optimiz. 16 (1995), 1323-1357.

[6] D. Schott, Basic properties of Fejér monotone sequences, Rostock. Math. Kolloq. 49 (1995), 57-74.

[7] D. Schott, Basic properties of Fejér monotone mappings, Rostock. Math. Kolloq. 50 (1997), 71-84.

[8] D. Schott, About strongly Fejér monotone mappings and their relaxations, Zeitschr. Anal. Anw. 16 (1997), 709-726.

[9] D. Schott, Weak convergence of Fejér monotone iterative methods, Rostock. Math. Kolloq. 51 (1997), 83-96.

[10] D. Schott, Strongly Fejér monotone mappings, Part III: Interval union model for maximal mappings, preprint.

[11] H. Stark, (ed.), Image recovery: Theory and applications, Academic Press, New York 1987.