Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2001_21_1_a0, author = {Papageorgiou, Nikolaos and Yannakakis, Nikolaos}, title = {Optimal control of nonlinear evolution equations}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {5--50}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2001}, zbl = {1009.49005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2001_21_1_a0/} }
TY - JOUR AU - Papageorgiou, Nikolaos AU - Yannakakis, Nikolaos TI - Optimal control of nonlinear evolution equations JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2001 SP - 5 EP - 50 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2001_21_1_a0/ LA - en ID - DMDICO_2001_21_1_a0 ER -
%0 Journal Article %A Papageorgiou, Nikolaos %A Yannakakis, Nikolaos %T Optimal control of nonlinear evolution equations %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2001 %P 5-50 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2001_21_1_a0/ %G en %F DMDICO_2001_21_1_a0
Papageorgiou, Nikolaos; Yannakakis, Nikolaos. Optimal control of nonlinear evolution equations. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 1, pp. 5-50. http://geodesic.mathdoc.fr/item/DMDICO_2001_21_1_a0/
[1] N.U. Ahmed and X. Xiang, Optimal control of infinite dimensional uncertain systems, J. Optim. Theory Appl 80 (1994), 261-272.
[2] S. Aizicovici and N.S. Papageorgiou, Infinite dimensional parametric optimal control systems, Japan Jour. Ind. Appl. Math. 10 (1993), 307-332.
[3] R. Ash, Real Analysis and Probability, Academic Press, New York 1972.
[4] H. Attouch and A. Damlamian, Problemes d'evolution dans les Hilberts et applications, J. Math. Pures Appl. 54 (1974), 53-74.
[5] E. Balder, Necessary and sufficient conditions for L₁ strong-weak lower semicontinuity of integral functionals, Nonlin. Anal-TMA 11 (1987), 1399-1404.
[6] H. Brezis, Operateurs Maximaux Monotones, North-Holland, Amsterdam 1973.
[7] F. Browder, Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains, Proc. Natl. Acad. Su USA 74 (1977), 2659-2661.
[8] L. Cesari, Existence of solutions and existence of optimal solutions, in: Mathematical Theories of Optimization, eds. J. Cecconi and T. Zolezzi, Springer, Berlin, Lecture Notes in Math. 979 (1983), 88-107.
[9] L. Cesari and S.H. Hou, Existence of solutions and existence of otpimal solutions, The quasilinear case, Rendiconti del Circolo Matematico di Palermo 34 (1985), 5-45.
[10] C. Dellacherie and P.A. Meyer, Probabilities and Potential, North Holland, Amsterdam 1978.
[11] J. Diestel and J. Uhl, Vector Measures, Math. Surveys 15, AMS, Providence, R.I (1977).
[12] J. Dugundji, Topology, Allyn and Bacon Inc, Boston 1966.
[13] I. Ekeland, On the variational principle, J. Math. Anal. 47 (1974), 324-353.
[14] A. Fryszkowski and J. Rzeżuchowski, Continuous version of Filippov-Ważewski relaxation theorem, J. Diff. Eqns 94 (1991), 254-265.
[15] J.-P. Gossez and V. Mustonen, Pseudomonotonicity and the Leray-Lions condition, Diff. and Integral Eqns 6 (1993), 37-45.
[16] N. Hirano, Nonlinear evolution equations with nonmonotone perturbations, Nonl. Anal - TMA 13 (1989), 599-609.
[17] S.H. Hou, Existence theorems of optimal control problems in Banach spaces, Nonlin. Anal - TMA 7 (1983), 239-257.
[18] S.H. Hou, Existence of solutions for a class of nonlinear control problems, J. Optim. Th. Apl. 66 (1990), 23-35.
[19] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis Volume I, Theory, Kluwer, Dordrecht 1997.
[20] S. Hu and N.S. Papageorgiou, Time dependent subdifferential evolution inclusions and optimal control, Memoirs of the AMS (May 1998-in press).
[21] C. Ionescu-Tulcea, Topics in the Theory of Lifting, Springer Verlag, Berlin 1969.
[22] J.-L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non-Lineaires, Dunod, Paris 1969.
[23] J. Oxtoby, Measure and Category, Springer Verlag, New York 1971.
[24] N.S. Papageorgiou, Optimal control of nonlinear evolution equations, Public Math. Debrecen 41 (1992), 41-51.
[25] N.S. Papageorgiou, Optimization of parametric controlled nonlinear evolution equations, Yokohama Math. Jour 42 (1994), 107-120.
[26] N.S. Papageorgiou, Existence theory for nonlinear distibuted parameter optimal control problems, Japan Jour Indust. Appl. Math. 12 (1995), 457-485.
[27] N.S. Papageorgiou, Minimax control of nonlinear evolution equations, Comment. Math. Univ. Carolinae 36 (1995), 36-56.
[28] N.S. Papageorgiou, Boundary value problems and periodic solutions for semilinear evolution inclusions, Comment. Math. Univ. Carolinae 35 (1994), 325-336.
[29] N.S. Papageorgiou, On the existence of solutions for nonlinear parabolic problems with nonmonotone discontinuities, J. Math. Anal. Appl. 205 (1997), 434-453.
[30] N.S. Papageorgiou, A continuous version of the relaxation theorem for nonlinear evolution inclusions, Kodai Math. Jour. 18 (1995), 169-186.
[31] N.S. Papageorgiou, F. Papalini and F. Renzacci, Existence of solutions and periodic solutions for nonlinear evolution inclusions, Rendiconti del Circolo Matematico di Palermo, to appear.
[32] N.S. Papageorgiou and N. Shahzad, Existence and strong relaxation theorems for nonlinear evolution inclusions, Yokohama Math. Jour. 43 (1995), 73-87.
[33] N.S. Papageorgiou and N. Shahzad, Properties of the solution set of nonlinear evolution inclusions, Appl. Math. Otpim. 36 (1997), 1-20.
[34] K.R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York 1967.
[35] J. Simon, Compact sets in the space $L^{p}(0,T;B)$, Ann Mat. Pura ed Appl. 146 (1987), 65-96.
[36] B.A. Ton, Nonlinear evolution equations in Banach spaces, J. Diff. Eqns 9 (1971), 608-618.
[37] E. Zeidler, Nonlinear Functional Analysis and Applications II, Springer Verlag, New York 1990.