Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2000_20_2_a4, author = {Kummer, Bernd}, title = {Generalized {Newton} and {NCP-methods:} convergence, regularity, actions}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {209--244}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2000}, zbl = {1016.90058}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a4/} }
TY - JOUR AU - Kummer, Bernd TI - Generalized Newton and NCP-methods: convergence, regularity, actions JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2000 SP - 209 EP - 244 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a4/ LA - en ID - DMDICO_2000_20_2_a4 ER -
%0 Journal Article %A Kummer, Bernd %T Generalized Newton and NCP-methods: convergence, regularity, actions %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2000 %P 209-244 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a4/ %G en %F DMDICO_2000_20_2_a4
Kummer, Bernd. Generalized Newton and NCP-methods: convergence, regularity, actions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 2, pp. 209-244. http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a4/
[1] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York 1984.
[2] S.C. Billups and M.C. Ferris, QPCOMP: A quadratic programming based solver for mixed complementarity problems, Math. Progr. B 76 (3) (1997), 533-562.
[3] F.H. Clarke, On the inverse function theorem, Pacific Journ. Math. 64 (1) (1976), 97-102.
[4] R. Cominetti, Metric Regularity, Tangent Sets, and Second-Order Optimality Conditions, Appl. Math. Optim. 21 (1990), 265-287.
[5] A.L. Dontchev, Local convergence of the Newton method for generalized equations, C.R. Acad. Sc. Paris 332 Ser. I (1996), 327-331.
[6] A.L. Dontchev and R.T. Rockafellar, Characterizations of Strong Regularity for Variational Inequalities over Polyhedral Convex Sets, SIAM J. Optimization 6 (1996), 1087-1105.
[7] A. Fischer, Solutions of monotone complementarity problems with locally Lipschitzian functions, Math. Progr. B 76 (3) (1997), 513-532.
[8] P.T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications, Mathematical Programming 48 (1990), 161-220.
[9] C.M. Ip and J. Kyparisis, Local convergence of quasi-Newton methods for B-diffenrentialble equations, MP 56 (1992), 71-89.
[10] V. Jeyakumar, D.T. Luc and S. Schaible, Characterization of generalized monotone nonsmooth continuous map using approximate Jacobians, J. Convex Analysis 5 (1) (1998), 119-132.
[11] H.Th. Jongen, D. Klatte and K. Tammer, Implicit functions and sensitivity of stationary points, Math. Programming 49 (1990), 123-138.
[12] C. Kanzow, N. Yamashita and M. Fukushima, New NCP-function and their properties, JOTA 94 (1997), 115-135.
[13] A. Kaplan, On the convergence of the penalty function method, Soviet Math. Dokl. 17 (4) (1976), 1008-1012.
[14] A. King and R.T. Rockafellar, Sensitivity analysis for nonsmooth generalized equations, MP 55 (1992), 341-364.
[15] D. Klatte and B. Kummer, Strong stability in nonlinear programming revisited, J. Australian Mathem. Soc. Ser. B 40 (1999), 336-352.
[16] D. Klatte and B. Kummer, Generalized Kojima functions and Lipschitz stability of critical points, Computational Otimization and Appl. 13 (1999), 61-85.
[17] M. Kojima, Strongly stable stationary solutions in nonlinear programs, in: Analysis and Computation of Fixed Points, S.M. Robinson ed., Academic Press, New York (1980), 93-138.
[18] M. Kojima and S. Shindo, Extensions of Newton and quasi-Newton methods to systems of PC¹ equations, Journ. of Operations Research Soc. of Japan 29 (1987), 352-374.
[19] B. Kummer, Newton's method for non-differentiable functions, in: Advances in Math. Optimization, J. Guddat et al. ed., Akademie Verlag Berlin, Ser. Mathem. Res. 45 (1988), 114-125.
[20] B. Kummer, Lipschitzian Inverse Functions, Directional Derivatives and Application in $C^{1.1}$-Optimization, Journal of Optimization Theory and Appl. 70 (3) (1991), 559-580.
[21] B. Kummer, Newton's method based on generalized derivatives for nonsmooth functions: Convergence Analysis, in: Lecture Notes in Economics and Mathematical Systems 382; Advances in Optimization; W. Oettli, D. Pallaschke (eds.), Springer, Berlin (1992), 171-194.
[22] B. Kummer, Lipschitzian and Pseudo-Lipschitzian Inverse Functions and Applications to Nonlinear Optimization, Lecture Notes in Pure and Applied Mathematics 195 (1997) (Math. Programming with Data Perturbations, ed. A.V. Fiacco), 201-222.
[23] B. Kummer, Metric Regularity: Characterizations, Nonsmooth Variations and Successive Approximation, Optimization 46 (1999), 247-281.
[24] R. Miffin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control and Optim. 15 (1977), 957-972.
[25] B.S. Mordukhovich, Complete characterization of opennes, metric regularity and Lipschitzian properties of maps, Trans. Amer. Math. Soc. 340 (1993), 1-35.
[26] J.-S. Pang and Liqun Qi, Nonsmooth equations: motivation and algorithms, SIAM J. Optimization 3 (1993), 443-465.
[27] J.-S. Pang, Newton's method for B-differentiable equations, Mathematics of OR 15 (1990), 311-341.
[28] J.-P. Penot, Metric Regularity, openness and Lipschitz behavior of multifunctions, Nonlin. Analysis 13 (1989), 629-643.
[29] L. Qi and J. Sun, A nonsmooth version of Newton's method, Math. Programming 58 (1993), 353-367.
[30] D. Ralph and S. Scholtes, Sensitivity analysis of composite piecewise smooth equations, Math. Progr. B 76 (3) (1997), 593-612.
[31] S.M. Robinson, Strongly regular generalized equations, Math. Oper. Res. 5 (1980), 43-62.
[32] S.M. Robinson, Newton's method for a class of nonsmooth functions, Working Paper, (Aug. 1988) Univ. of Wisconsin-Madison, Department of Industrial Engineering, Madison, WI 53706; in Set-Valued Analysis 2 (1994), 291-305.
[33] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton 1970.
[34] D. Sun and L. Qi, On NCP functions, Computational Optimization and Appl. 13 (1999), 201-220.
[35] L. Thibault, Subdifferentials of compactly Lipschitzian vector-valued functions, Ann. Mat. Pura Appl. (4) 125 (1980), 157-192.