Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2000_20_2_a2, author = {Bia{\l}o\'n, Pawe{\l}}, title = {Large-scale nonlinear programming algorithm using projection methods}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {171--194}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2000}, zbl = {1001.65061}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a2/} }
TY - JOUR AU - Białoń, Paweł TI - Large-scale nonlinear programming algorithm using projection methods JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2000 SP - 171 EP - 194 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a2/ LA - en ID - DMDICO_2000_20_2_a2 ER -
%0 Journal Article %A Białoń, Paweł %T Large-scale nonlinear programming algorithm using projection methods %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2000 %P 171-194 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a2/ %G en %F DMDICO_2000_20_2_a2
Białoń, Paweł. Large-scale nonlinear programming algorithm using projection methods. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 2, pp. 171-194. http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a2/
[1] A. Altman and J. Gondzio, Regularized Symmetric Indefinite Systems in Interior Point Methods for Linear and Quadratic Optimization, Optimization Methods and Software 11-12 (2000), 275-302.
[2] H. Bauschke and J. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Review 38 (3) (1996), 367-426.
[3] A. Cegielski, A method of projection onto an acute cone with level control in convex minimization, Math. Progr. 85 (1999), 469-490.
[4] A. Cegielski, Relaxation methods in Convex Optimization Problems, Higher College of Engineering, Series Monographies, No. 67, Zielona Góra, Poland (in Polish).
[5] R. Dylewski, Numerical behavior of the method of projection onto an acute cone with level control in convex optimization, Discuss. Math. Differential Inclusions, Control and Optimization 20 (2000), 147-158.
[6] S. Flam and J. Zowe, Relaxed outer projections, weighted averages and convex feasibility, BIT 30 (1990), 289-300.
[7] S. Kim, A. Hyunsil and C. Seong-Cheol, Variable target value subgradient method, Math. Progr. 49 (1991), 356-369.
[8] K. Kiwiel, Monotone Gram matrices and deepest surrogate inequalities in accelerated relaxation methods for convex feasibility problems, Linear Algebra and its Applications 215 (1997), 27-33.
[9] K. Kiwiel, The efficiency of subgradient projection methods for convex optimization, Part I: General level methods, SIAM Control Optim. 34 (2) (1996), 660-676.
[10] K. Kiwiel, Block-Iterative Surrogate Projection Methods for Convex Feasibility Problems, Linear Algebra and its Applications 15 (1995), 225-259.
[11] T. Kręglewski, J. Granat and A. Wierzbicki, IAC-DIDAS-N - A Dynamic Interactive Decision Analysis and Support System for Multicriteria Analysis of Nonlinear Models, v. 4.0, Collaborative Paper, CP-91-101, International Institute for Applied Systems Analysis, Laxenburg, Austria, June 1991.
[12] C. Lemaréchal, A.S. Nemirovskii and Yu. Nesterov, New variants of bundle methods, Math. Progr. 69 (1995), 111-147.
[13] B. Łopuch, Projection methods with an aggregation for convex feasibility problems, Doctoral thesis, Institute of Systems Research, Warsaw 1997 (in Polish).
[14] M. Makowski, LP-DIT data interchange tool for linear programming problems (version 1.20), Working Paper, WP-94-36, International Institute for Applied Systems Analysis, Laxenburg, Austria 1994.
[15] A.S. Nemirovskii and D. Yudin, Optimization Problem Complexity and Method Efficiency, Nauka, Moscow 1979 (in Russian).
[16] T. Polyak, Minimization of unsmooth functionals, Zh. Vychiisl. Mat. Fiz. 9 (1969), 14-29 (in Russian).
[17] M. Shchepakin, On a modification of a class of algorithms for mathematical programming, Zh. Vychisl. Mat. i Mat. Fiz. 19 (1979), 1387-1395 (in Russian).
[18] A. Wierzbicki, A Penalty Function Shifting Method in Constrained Static Optimization and its Convergence Properties, Archiwum Automatyki i Telemechaniki XVI (4) (1971), 396-416.