Equilibrium of maximal monotone operator in a given set
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 2, pp. 159-169.

Voir la notice de l'article provenant de la source Library of Science

Sufficient conditions for an equilibrium of maximal monotone operator to be in a given set are provided. This partially answers to a question posed in [10].
Keywords: subdifferentials, maximal monotonicity, equilibrium points, min-max
@article{DMDICO_2000_20_2_a1,
     author = {Zagrodny, Dariusz},
     title = {Equilibrium of maximal monotone operator in a given set},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {159--169},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     zbl = {0983.49012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a1/}
}
TY  - JOUR
AU  - Zagrodny, Dariusz
TI  - Equilibrium of maximal monotone operator in a given set
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2000
SP  - 159
EP  - 169
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a1/
LA  - en
ID  - DMDICO_2000_20_2_a1
ER  - 
%0 Journal Article
%A Zagrodny, Dariusz
%T Equilibrium of maximal monotone operator in a given set
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2000
%P 159-169
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a1/
%G en
%F DMDICO_2000_20_2_a1
Zagrodny, Dariusz. Equilibrium of maximal monotone operator in a given set. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 2, pp. 159-169. http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a1/

[1] A. Drwalewska and L. Gajek, On Localizing Global Pareto Solutions in a Given Convex Set, Applicationes Mathematicae 26 (1999), 383-301.

[2] L. Gajek and D. Zagrodny, Countably Orderable Sets and Their Applications in Optimization, Optimization 26 (1992), 287-301.

[3] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer-Verlag, Berlin, Heidelberg 1989.

[4] M. Przeworski and D. Zagrodny, Constrained Equilibrium Point of Maximal Monotone Operator via Variational Inequality, Journal of Applied Analysis 5 (1999), 147-152.

[5] M. Przeworski, Lokalizacja Punktów Wykresu Operatora Maksymalnie Monotonicznego, Praca doktorska, Instytut Matematyki Politechniki ódzkiej 1999.

[6] R.T. Rockafellar and R.J-B. Wets, Variational Analysis, Springer-Verlag, Berlin, Heidelberg 1998.

[7] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa and D. Reidel Publishing Company, Dordrecht, Boston 1984.

[8] S. Simons, Subtangents with Controlled Slope, Nonlinear Analysis, Theory, Methods and Applications 22 (11) (1994), 1373-1389.

[9] S. Simons, Swimming Below Icebergs, Set-Valued Analysis 2 (1994), 327-337.

[10] S. Simons, Minimax and Monotonicity, Springer-Verlag, Berlin, Heidelberg 1998.

[11] E. Zeidler, Nonlinear Functional Analysis and Its Applications, IIB Nonlinear Monotone Operators, Springer-Verlag, Berlin, Heidelberg 1989.

[12] D. Zagrodny, The Maximal Monotonicity of the Subdifferentials of Convex Functions: Simons' Problem, Set-Valued Analysis 4 (1996), 301-314.