Transportation flow problems with Radon measure variables
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 1, pp. 93-111.

Voir la notice de l'article provenant de la source Library of Science

For a multidimensional control problem (P)_K involving controls u ∈ L_∞, we construct a dual problem (D)_K in which the variables ν to be paired with u are taken from the measure space rca (Ω,) instead of (L_∞)*. For this purpose, we add to (P)_K a Baire class restriction for the representatives of the controls u. As main results, we prove a strong duality theorem and saddle-point conditions.
Keywords: multidimensional control problems, strong duality, saddle-point conditions, Baire classification
@article{DMDICO_2000_20_1_a6,
     author = {Wagner, Marcus},
     title = {Transportation flow problems with {Radon} measure variables},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {93--111},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     zbl = {0977.49021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a6/}
}
TY  - JOUR
AU  - Wagner, Marcus
TI  - Transportation flow problems with Radon measure variables
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2000
SP  - 93
EP  - 111
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a6/
LA  - en
ID  - DMDICO_2000_20_1_a6
ER  - 
%0 Journal Article
%A Wagner, Marcus
%T Transportation flow problems with Radon measure variables
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2000
%P 93-111
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a6/
%G en
%F DMDICO_2000_20_1_a6
Wagner, Marcus. Transportation flow problems with Radon measure variables. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 1, pp. 93-111. http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a6/

[1] H.W. Alt, Lineare Funktionalanalysis, Springer, New York-Berlin 1992.

[2] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston-Basel-Berlin 1990.

[3] C. Carathéodory, Vorlesungen über reelle Funktionen, Chelsea, New York 1968.

[4] N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory, Wiley-Interscience, New York 1988.

[5] R.V. Gamkrelidze, Principles of Optimal Control Theory, Plenum Press, New York-London 1978.

[6] F. Hüseinov, Approximation of Lipschitz functions by infinitely differentiable functions with derivatives in a convex body, Turkish J. of Math. 16 (1992), 250-256.

[7] R. Klötzler, On a general conception of duality in optimal control, in: Equadiff IV (Proceedings). Springer, New York-Berlin 1979. (Lecture Notes in Mathematics 703)

[8] R. Klötzler, Optimal transportation flows, Journal for Analysis and its Applications 14 (1995), 391-401.

[9] R. Klötzler, Strong duality for transportation flow problems, Journal for Analysis and its Applications 17 (1998), 225-228.

[10] H. Kraut, Optimale Korridore in Steuerungsproblemen, Dissertation, Karl-Marx-Universität Leipzig 1990.

[11] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, Berlin-Heidelberg-New York 1966 (Grundlehren 130).

[12] S. Pickenhain and M. Wagner, Critical points in relaxed deposit problems, in: A. Ioffe, S. Reich, I. Shafrir, eds., Calculus of variations and optimal control, Technion 98, Vol. II (Research Notes in Mathematics, Vol. 411), Chapman Hall/CRC Press; Boca Raton, 1999, 217-236.

[13] S. Pickenhain and M. Wagner, Pontryagin's principle for state-constrained control problems governed by a first-order PDE system, BTU Cottbus, Preprint-Reihe Mathematik M-03/1999. To appear in: JOTA.

[14] T. Roubicek, Relaxation in Optimization Theory and Variational Calculus, De Gruyter, Berlin-New York 1997.

[15] M. Wagner, Erweiterungen eines Satzes von F. Hüseinov über die $C^∞$-Approximation von Lipschitzfunktionen, BTU Cottbus, Preprint-Reihe Mathematik M-11/1999.