Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2000_20_1_a4, author = {Eppler, Karsten}, title = {Boundary integral representations of second derivatives in shape optimization}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {63--78}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2000}, zbl = {0961.49024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a4/} }
TY - JOUR AU - Eppler, Karsten TI - Boundary integral representations of second derivatives in shape optimization JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2000 SP - 63 EP - 78 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a4/ LA - en ID - DMDICO_2000_20_1_a4 ER -
%0 Journal Article %A Eppler, Karsten %T Boundary integral representations of second derivatives in shape optimization %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2000 %P 63-78 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a4/ %G en %F DMDICO_2000_20_1_a4
Eppler, Karsten. Boundary integral representations of second derivatives in shape optimization. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 1, pp. 63-78. http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a4/
[1] S. Belov and N. Fujii, Symmetry and sufficient condition of optimality in a domain optimization problem, Control and Cybernetics 26 (1) (1997), 45-56.
[2] D. Colton and R. Kress, Integral equation methods in scattering theory, Malabar, Krieger 1992.
[3] K. Eppler, Optimal shape design for elliptic equations via BIE-methods, preprint TU Chemnitz, 1998.
[4] K. Eppler, Optimal shape design for elliptic equations via BIE-methods, submitted (1999).
[5] K. Eppler, Fréchet-differentiability and sufficient optimality conditions for shape functionals, in: K.-H. Hoffmann, G. Leugering, F. Tröltzsch (eds.), Optimal control of Partial Differential Equations, ISNM, 133 (1999), 133-143, Basel: Birkhäuser.
[6] K. Eppler, Boundary integral representations of second derivatives in shape optimization, dfg-preprint series 'Echtzeit-Optimierung grosser Systeme' preprint 00-1 (2000), http://www.tu-chemnitz.de/eppler
[7] K. Eppler, Second derivatives and sufficient optimality conditions for shape functionals, to appear in Control and Cybernetics (2000).
[8] N. Fujii, Second order necessary conditions in a domain optimization problem, Journal of Optimization Theory and Applications 65 (2) (1990), 223-245.
[9] N. Fujii, Sufficient conditions for optimality in shape optimization, Control and Cybernetics 23 (3) (1994), 393-406.
[10] N.M. Guenther, Die Potentialtheorie und ihre Anwendungen auf Grundaufgaben der mathematischen Physik, Leipzig, Teubner 1957.
[11] W. Hackbusch, Integralgleichungen, Stuttgart, Teubner 1989.
[12] J. Hadamard, Lessons on Calculus of Variations, (in French), Paris, Gauthier-Villards 1910.
[13] J. Haslinger and P. Neittaanmäki, Finite Element Approximation for Optimal Shape, Material and Topological Design, Wiley, Chichester 1988.
[14] A. Kirsch, The domain derivative and two applications in inverse scattering theory, Inverse Problems 9 (1993), 81-96.
[15] A.M. Khludnev and J. Sokolowski, Modelling and Control in Solid Mechanics, Birkhäuser, Basel 1997.
[16] S.G. Michlin, Partielle Differentialgleichungen in der Mathematischen Physik, Akademie-Verlag, Berlin 1978.
[17] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer, New York 1983.
[18] R. Potthast, Fréchet differentiability of boundary integral operators in inverse acoustic scattering, Inverse Problems 10 (1994), 431-447.
[19] J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization, Springer, Berlin 1992.