On the equiconvergence, uniform on the whole line $\mathbf R$, with the Fourier integral of the spectral expansion of an arbitrary function in the class $L_p(\mathbf R)$ corresponding to a selfadjoint extension of Hill's operator
Differencialʹnye uravneniâ, Tome 31 (1995) no. 8, pp. 1310-1322.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1995_31_8_a4,
     author = {V. A. Il'in and I. Antoniou},
     title = {On the equiconvergence, uniform on the whole line $\mathbf R$, with the {Fourier} integral of the spectral expansion of an arbitrary function in the class $L_p(\mathbf R)$ corresponding to a selfadjoint extension of {Hill's} operator},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1310--1322},
     publisher = {mathdoc},
     volume = {31},
     number = {8},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1995_31_8_a4/}
}
TY  - JOUR
AU  - V. A. Il'in
AU  - I. Antoniou
TI  - On the equiconvergence, uniform on the whole line $\mathbf R$, with the Fourier integral of the spectral expansion of an arbitrary function in the class $L_p(\mathbf R)$ corresponding to a selfadjoint extension of Hill's operator
JO  - Differencialʹnye uravneniâ
PY  - 1995
SP  - 1310
EP  - 1322
VL  - 31
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1995_31_8_a4/
LA  - ru
ID  - DE_1995_31_8_a4
ER  - 
%0 Journal Article
%A V. A. Il'in
%A I. Antoniou
%T On the equiconvergence, uniform on the whole line $\mathbf R$, with the Fourier integral of the spectral expansion of an arbitrary function in the class $L_p(\mathbf R)$ corresponding to a selfadjoint extension of Hill's operator
%J Differencialʹnye uravneniâ
%D 1995
%P 1310-1322
%V 31
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1995_31_8_a4/
%G ru
%F DE_1995_31_8_a4
V. A. Il'in; I. Antoniou. On the equiconvergence, uniform on the whole line $\mathbf R$, with the Fourier integral of the spectral expansion of an arbitrary function in the class $L_p(\mathbf R)$ corresponding to a selfadjoint extension of Hill's operator. Differencialʹnye uravneniâ, Tome 31 (1995) no. 8, pp. 1310-1322. http://geodesic.mathdoc.fr/item/DE_1995_31_8_a4/