On the equiconvergence, uniform on the whole line $\mathbf R$, with the Fourier integral of the spectral expansion of an arbitrary function in the class $L_p(\mathbf R)$ corresponding to a selfadjoint extension of Hill's operator
Differencialʹnye uravneniâ, Tome 31 (1995) no. 8, pp. 1310-1322
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_1995_31_8_a4,
author = {V. A. Il'in and I. Antoniou},
title = {On the equiconvergence, uniform on the whole line $\mathbf R$, with the {Fourier} integral of the spectral expansion of an arbitrary function in the class $L_p(\mathbf R)$ corresponding to a selfadjoint extension of {Hill's} operator},
journal = {Differencialʹnye uravneni\^a},
pages = {1310--1322},
year = {1995},
volume = {31},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_1995_31_8_a4/}
}
TY - JOUR AU - V. A. Il'in AU - I. Antoniou TI - On the equiconvergence, uniform on the whole line $\mathbf R$, with the Fourier integral of the spectral expansion of an arbitrary function in the class $L_p(\mathbf R)$ corresponding to a selfadjoint extension of Hill's operator JO - Differencialʹnye uravneniâ PY - 1995 SP - 1310 EP - 1322 VL - 31 IS - 8 UR - http://geodesic.mathdoc.fr/item/DE_1995_31_8_a4/ LA - ru ID - DE_1995_31_8_a4 ER -
%0 Journal Article %A V. A. Il'in %A I. Antoniou %T On the equiconvergence, uniform on the whole line $\mathbf R$, with the Fourier integral of the spectral expansion of an arbitrary function in the class $L_p(\mathbf R)$ corresponding to a selfadjoint extension of Hill's operator %J Differencialʹnye uravneniâ %D 1995 %P 1310-1322 %V 31 %N 8 %U http://geodesic.mathdoc.fr/item/DE_1995_31_8_a4/ %G ru %F DE_1995_31_8_a4
V. A. Il'in; I. Antoniou. On the equiconvergence, uniform on the whole line $\mathbf R$, with the Fourier integral of the spectral expansion of an arbitrary function in the class $L_p(\mathbf R)$ corresponding to a selfadjoint extension of Hill's operator. Differencialʹnye uravneniâ, Tome 31 (1995) no. 8, pp. 1310-1322. http://geodesic.mathdoc.fr/item/DE_1995_31_8_a4/