A system of differential equations that has an infinite number of stable periodic solutions
Differencialʹnye uravneniâ, Tome 10 (1974) no. 12, pp. 2179-2183.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1974_10_12_a8,
     author = {V. A. Pliss},
     title = {A system of differential equations that has an infinite number of stable periodic solutions},
     journal = {Differencialʹnye uravneni\^a},
     pages = {2179--2183},
     publisher = {mathdoc},
     volume = {10},
     number = {12},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1974_10_12_a8/}
}
TY  - JOUR
AU  - V. A. Pliss
TI  - A system of differential equations that has an infinite number of stable periodic solutions
JO  - Differencialʹnye uravneniâ
PY  - 1974
SP  - 2179
EP  - 2183
VL  - 10
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1974_10_12_a8/
LA  - ru
ID  - DE_1974_10_12_a8
ER  - 
%0 Journal Article
%A V. A. Pliss
%T A system of differential equations that has an infinite number of stable periodic solutions
%J Differencialʹnye uravneniâ
%D 1974
%P 2179-2183
%V 10
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1974_10_12_a8/
%G ru
%F DE_1974_10_12_a8
V. A. Pliss. A system of differential equations that has an infinite number of stable periodic solutions. Differencialʹnye uravneniâ, Tome 10 (1974) no. 12, pp. 2179-2183. http://geodesic.mathdoc.fr/item/DE_1974_10_12_a8/