Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_1969_5_10_a8, author = {I. K. Lipenkov}, title = {The type $D$ curves of the differential equation $(x+\xi)(x+\eta)yy'=P_3(x,y)$ which arise from a second order closed curve}, journal = {Differencialʹnye uravneni\^a}, pages = {1830--1835}, publisher = {mathdoc}, volume = {5}, number = {10}, year = {1969}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_1969_5_10_a8/} }
TY - JOUR AU - I. K. Lipenkov TI - The type $D$ curves of the differential equation $(x+\xi)(x+\eta)yy'=P_3(x,y)$ which arise from a second order closed curve JO - Differencialʹnye uravneniâ PY - 1969 SP - 1830 EP - 1835 VL - 5 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_1969_5_10_a8/ LA - ru ID - DE_1969_5_10_a8 ER -
%0 Journal Article %A I. K. Lipenkov %T The type $D$ curves of the differential equation $(x+\xi)(x+\eta)yy'=P_3(x,y)$ which arise from a second order closed curve %J Differencialʹnye uravneniâ %D 1969 %P 1830-1835 %V 5 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_1969_5_10_a8/ %G ru %F DE_1969_5_10_a8
I. K. Lipenkov. The type $D$ curves of the differential equation $(x+\xi)(x+\eta)yy'=P_3(x,y)$ which arise from a second order closed curve. Differencialʹnye uravneniâ, Tome 5 (1969) no. 10, pp. 1830-1835. http://geodesic.mathdoc.fr/item/DE_1969_5_10_a8/