The type $D$ curves of the differential equation $(x+\xi)(x+\eta)yy'=P_3(x,y)$ which arise from a second order closed curve
Differencialʹnye uravneniâ, Tome 5 (1969) no. 10, pp. 1830-1835.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_1969_5_10_a8,
     author = {I. K. Lipenkov},
     title = {The type $D$ curves of the differential equation $(x+\xi)(x+\eta)yy'=P_3(x,y)$ which arise from a second order closed curve},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1830--1835},
     publisher = {mathdoc},
     volume = {5},
     number = {10},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_1969_5_10_a8/}
}
TY  - JOUR
AU  - I. K. Lipenkov
TI  - The type $D$ curves of the differential equation $(x+\xi)(x+\eta)yy'=P_3(x,y)$ which arise from a second order closed curve
JO  - Differencialʹnye uravneniâ
PY  - 1969
SP  - 1830
EP  - 1835
VL  - 5
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_1969_5_10_a8/
LA  - ru
ID  - DE_1969_5_10_a8
ER  - 
%0 Journal Article
%A I. K. Lipenkov
%T The type $D$ curves of the differential equation $(x+\xi)(x+\eta)yy'=P_3(x,y)$ which arise from a second order closed curve
%J Differencialʹnye uravneniâ
%D 1969
%P 1830-1835
%V 5
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_1969_5_10_a8/
%G ru
%F DE_1969_5_10_a8
I. K. Lipenkov. The type $D$ curves of the differential equation $(x+\xi)(x+\eta)yy'=P_3(x,y)$ which arise from a second order closed curve. Differencialʹnye uravneniâ, Tome 5 (1969) no. 10, pp. 1830-1835. http://geodesic.mathdoc.fr/item/DE_1969_5_10_a8/