Approximate solution of a boundary value problem with a discontinuous solution
Daghestan Electronic Mathematical Reports, Tome 15 (2021), pp. 22-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using spline-functions for three-point rational interpolants an approximate solution of the boundary value problem: $y^\prime +p(x) y=f(x)$, $y(a)=A$, $y(b)=B$ is constructed. In this case, the functions $p(x)$ and $f(x)$ are assumed to be continuous on the segment $[a,b]$ and it is allowed, that there exists a solution $y (x)$ that can have a discontinuity of the first kind with a jump at a given point $\tau\in (a, b)$.
Keywords: rational spline-function, differential equation, approximate solution.
@article{DEMR_2021_15_a1,
     author = {A.-R. K. Ramazanov and A.-K. K. Ramazanov},
     title = {Approximate solution of a boundary value problem with a discontinuous solution},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {22--29},
     publisher = {mathdoc},
     volume = {15},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2021_15_a1/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - A.-K. K. Ramazanov
TI  - Approximate solution of a boundary value problem with a discontinuous solution
JO  - Daghestan Electronic Mathematical Reports
PY  - 2021
SP  - 22
EP  - 29
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2021_15_a1/
LA  - ru
ID  - DEMR_2021_15_a1
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A A.-K. K. Ramazanov
%T Approximate solution of a boundary value problem with a discontinuous solution
%J Daghestan Electronic Mathematical Reports
%D 2021
%P 22-29
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2021_15_a1/
%G ru
%F DEMR_2021_15_a1
A.-R. K. Ramazanov; A.-K. K. Ramazanov. Approximate solution of a boundary value problem with a discontinuous solution. Daghestan Electronic Mathematical Reports, Tome 15 (2021), pp. 22-29. http://geodesic.mathdoc.fr/item/DEMR_2021_15_a1/

[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 319 pp. | MR

[2] Stechkin S.V., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR

[3] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[4] de Bor K., Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985, 304 pp. | MR

[5] Jerri A. J., “The Gibbs phenomenon in Fourier analysis, splines and wavelet approximations”, Mathematics and its Applications, 446, Kluwer Academic publishers, 1998, 312–317 | MR

[6] Richards F. B., “A Gibbs phenomenon for spline functions”, Journal of approximation theory, 66 (1991), 344–351 | DOI | MR | Zbl

[7] Zhimin Zhang, Clyde F. Martin, “Convergence and Gibbs phenomenon in cubic spline interpolation of discontinuous functions”, Journal of Computational and Applied Mathematics, 87 (1997), 359–371 | DOI | MR | Zbl

[8] Ramazanov A.-R. K., Magomedova V. G., “Bezuslovno skhodyaschiesya interpolyatsionnye ratsionalnye splainy”, Mat. zametki, 103:4 (2018), 588–599

[9] Ramazanov A.-R. K., Ramazanov A. K., Magomedova V. G., “O yavlenii Gibbsa dlya ratsionalnykh splain-funktsii”, Tr. In–ta matematiki i mekhaniki UrO RAN, 26, no. 2, 2020, 238–251 | MR

[10] Ramazanov A.-R. K., Magomedova V. G., “Splainy po trekhtochechnym ratsionalnym interpolyantam s avtonomnymi polyusami”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 16–28