Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2021_15_a0, author = {M. A. Boudref}, title = {About the convergence of the {Fourier} transform}, journal = {Daghestan Electronic Mathematical Reports}, pages = {1--21}, publisher = {mathdoc}, volume = {15}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DEMR_2021_15_a0/} }
M. A. Boudref. About the convergence of the Fourier transform. Daghestan Electronic Mathematical Reports, Tome 15 (2021), pp. 1-21. http://geodesic.mathdoc.fr/item/DEMR_2021_15_a0/
[1] Ferenc Weisz., “Multi-Dimensional Fourier Transforms. Convergence and Summability of Fourier Transforms and Hardy Spaces”, Applied and Numerical Harmonic Analysis, Birkhäuser, 2017, 203–227 | MR
[2] Mamedov R. G., Osmanov G. I., “Some properties of functions that are expressed by their coefficients and their Fourier transforms”, Izv. Vyssh. Uchebn. Zaved. Mat., 5 (1976), 65–78 | MR | Zbl
[3] Minakshisundaram S. and Szász O., “On absolute of convergence of multiple Fourier series”, Journal: Trans. Amer. Math. Soc., 61 (1947), 36–53 | DOI | MR | Zbl
[4] Osmanov G. I., “On the absolute convergence of the Fourier integral in the space $\mathbb{R}^{n}$”, Dokl. Akad. Nauk., 323:5 (1992), 838–840 | MR | Zbl
[5] Osmanov G. I., “Convergence of the Fourier integral on the plane”, Izv. Vyssh. Uchebn. Zaved. Mat., 10 (1981), 49–51 | MR | Zbl
[6] Osmanov G. I., “Certain properties of the Fourier coefficients and Fourier transforms of functions from the classes $\Lambda\left( \alpha ,\beta ,\alpha ^{^{\prime }},\beta ^{^{\prime }}\right) $ and $\Delta \left( \alpha ,\beta ,\alpha ^{^{\prime }},\beta ^{^{\prime }}\right)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 6 (1972), 50–59 | MR | Zbl
[7] Ronald Newbold Bracewell, Two Dimensional Imaging, Prentice Hall, Hoboken, New Jersey, 1994, 689 pp.
[8] Zygmund A., Trigonometric series, Cambridge University Press, Cambridge, 1968, 747 pp. | MR