About the convergence of the Fourier transform
Daghestan Electronic Mathematical Reports, Tome 15 (2021), pp. 1-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result is the proof of the theorems, the results of which one can characterize as a weak form of the formula for the inversion of the bi-dimmensional Fourier transform. Sufficient conditions on a function are obtained for a weak (of degree $r$) convergence of bi-dimmensional Fourier transform for a function $f(x;y)$. These conditions have an integral form and describe the behavior of the function near the border of a rectangle. A similar theorem is proved, in which the Fourier transform of a function $f$ is replaced by the Fourier transform of another function $g$, the norm of the central difference of which does not exceed the norm of the central difference of $f$. The principal objective is to study the behavior of the Fourier transform of $g$ and $f$.
Keywords: two-dimensional Fourier transform, Riemann-Lebesgue theorem.
@article{DEMR_2021_15_a0,
     author = {M. A. Boudref},
     title = {About the convergence of the {Fourier} transform},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {15},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2021_15_a0/}
}
TY  - JOUR
AU  - M. A. Boudref
TI  - About the convergence of the Fourier transform
JO  - Daghestan Electronic Mathematical Reports
PY  - 2021
SP  - 1
EP  - 21
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2021_15_a0/
LA  - en
ID  - DEMR_2021_15_a0
ER  - 
%0 Journal Article
%A M. A. Boudref
%T About the convergence of the Fourier transform
%J Daghestan Electronic Mathematical Reports
%D 2021
%P 1-21
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2021_15_a0/
%G en
%F DEMR_2021_15_a0
M. A. Boudref. About the convergence of the Fourier transform. Daghestan Electronic Mathematical Reports, Tome 15 (2021), pp. 1-21. http://geodesic.mathdoc.fr/item/DEMR_2021_15_a0/

[1] Ferenc Weisz., “Multi-Dimensional Fourier Transforms. Convergence and Summability of Fourier Transforms and Hardy Spaces”, Applied and Numerical Harmonic Analysis, Birkhäuser, 2017, 203–227 | MR

[2] Mamedov R. G., Osmanov G. I., “Some properties of functions that are expressed by their coefficients and their Fourier transforms”, Izv. Vyssh. Uchebn. Zaved. Mat., 5 (1976), 65–78 | MR | Zbl

[3] Minakshisundaram S. and Szász O., “On absolute of convergence of multiple Fourier series”, Journal: Trans. Amer. Math. Soc., 61 (1947), 36–53 | DOI | MR | Zbl

[4] Osmanov G. I., “On the absolute convergence of the Fourier integral in the space $\mathbb{R}^{n}$”, Dokl. Akad. Nauk., 323:5 (1992), 838–840 | MR | Zbl

[5] Osmanov G. I., “Convergence of the Fourier integral on the plane”, Izv. Vyssh. Uchebn. Zaved. Mat., 10 (1981), 49–51 | MR | Zbl

[6] Osmanov G. I., “Certain properties of the Fourier coefficients and Fourier transforms of functions from the classes $\Lambda\left( \alpha ,\beta ,\alpha ^{^{\prime }},\beta ^{^{\prime }}\right) $ and $\Delta \left( \alpha ,\beta ,\alpha ^{^{\prime }},\beta ^{^{\prime }}\right)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 6 (1972), 50–59 | MR | Zbl

[7] Ronald Newbold Bracewell, Two Dimensional Imaging, Prentice Hall, Hoboken, New Jersey, 1994, 689 pp.

[8] Zygmund A., Trigonometric series, Cambridge University Press, Cambridge, 1968, 747 pp. | MR