Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2020_14_a4, author = {T. K. Yuldashev (Iuldashev) and B. J. Kadirkulov}, title = {On solvability of an initial value problem for {Hilfer} type fractional differential equation with nonlinear maxima}, journal = {Daghestan Electronic Mathematical Reports}, pages = {48--65}, publisher = {mathdoc}, volume = {14}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DEMR_2020_14_a4/} }
TY - JOUR AU - T. K. Yuldashev (Iuldashev) AU - B. J. Kadirkulov TI - On solvability of an initial value problem for Hilfer type fractional differential equation with nonlinear maxima JO - Daghestan Electronic Mathematical Reports PY - 2020 SP - 48 EP - 65 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2020_14_a4/ LA - en ID - DEMR_2020_14_a4 ER -
%0 Journal Article %A T. K. Yuldashev (Iuldashev) %A B. J. Kadirkulov %T On solvability of an initial value problem for Hilfer type fractional differential equation with nonlinear maxima %J Daghestan Electronic Mathematical Reports %D 2020 %P 48-65 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2020_14_a4/ %G en %F DEMR_2020_14_a4
T. K. Yuldashev (Iuldashev); B. J. Kadirkulov. On solvability of an initial value problem for Hilfer type fractional differential equation with nonlinear maxima. Daghestan Electronic Mathematical Reports, Tome 14 (2020), pp. 48-65. http://geodesic.mathdoc.fr/item/DEMR_2020_14_a4/
[1] Application of fractional calculus in physics, ed. Hilfer R., World Scientific Publishing Company, Singapore, 2000, 472 pp. | MR
[2] Handbook of fractional calculus with applications, v. 1–8, ed. Tenreiro Machado J.A., Walter de Gruyter GmbH, Berlin–Boston, 2019.
[3] Hilfer R., “Experimental evidence for fractional time evolution in glass forming materials”, Chem. Phys., 284:1–2 (2002), 399–408 | DOI | MR
[4] Hilfer R., “On fractional relaxation”, Part III: Scaling., Fractals, 1, Supp. 01 (2003), 251–257 | DOI | MR
[5] Hilfer R., Luchko Y., Tomovski Z., “Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives”, Fract. Calc. Appl. Anal., 12:3 (2009), 299–318 http://www.math.bas.bg/f̃caa/volume12/fcaa123 | MR | Zbl
[6] Kim M. Ha, Chol Ri. G., Chol O. H., “Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives”, Fract. Calc. Appl. Anal., 17:1 (2014), 79–95 | DOI | MR | Zbl
[7] Samko S.G., Kilbas A.A., Marichev O.I., Fractional integrals and derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993 | MR | Zbl
[8] Mainardi F., Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and Fractional Calculus in Continuum Mechanics, eds. Carpinteri A., Mainardi F., Springer, Wien, 1997 | MR
[9] Area I., Batarfi H., Losada J., Nieto J. J., Shammakh W., Torres A., “On a fractional order Ebola epidemic model”, ID 278, Adv. El. J. Differ. Equations., 1 (2015) | MR | Zbl
[10] Hussain A., Baleanu D., Adeel M., “Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model”, Adv. in Differ Equations, 384 (2020) | MR | Zbl
[11] Ullah S., Khan M. A., Farooq M., Hammouch Z., Baleanu D., “A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative”, Discrete Contin. Dyn. Syst., Ser. S, 13:3 (2020), 975-993 | MR | Zbl
[12] Kumar D., Baleanu D., “Editorial: Fractional calculus and its applications in physics”, Front. Phys., 7:6 (2019.)
[13] Sun H., Chang A., Zhang Y., Chen W., “A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications”, Fract. Calc. Appl. Anal., 22:1 (2019), 27–59 | DOI | MR | Zbl
[14] Saxena R.K., Garra R., Orsingher E., “Analytical solution of space-time fractional telegraph-type equations involving Hilfer and Hadamard derivatives”, Integral Transforms Spec. Funct., 27:1 (2015), 30–42 | DOI | MR
[15] Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: a review”, Proc. A., 476:2234 (2020), 1–32 | MR
[16] Sandev T., Tomovski Z., Fractional equations and models: Theory and applications, v. 61, Dev. Math., Springer Nature Switzerland AG, Cham. – Switzerland, 2019, 345 pp.
[17] Yuldashev T.K., Kadirkulov B.J., “Boundary value problem for weak nonlinear partial differential equations of mixed type with fractional Hilfer operator”, ID 68, Axioms, 9:2 (2020), 1–19 | MR
[18] Yuldashev T.K., Kadirkulov B.J., “Nonlocal problem for a mixed type fourth-order differential equation with Hilfer fractional operator”, Ural Math. J., 6:1 (2020), 153–167 | DOI | MR | Zbl
[19] Yuldashev T.K., Karimov E.T., “Inverse problem for a mixed type integro-differential equation with fractional order Caputo operators and spectral parameters”, ID 121, Axioms, 9:4 (2020), 24 pp. | DOI | MR | Zbl
[20] Yuldashev T.K., Ovsyanikov S.M., “Priblizhennoe reshenie sistemy nelineinykh integralnykh uravnenii s zapazdyvayuschim argumentom i priblizhennoe vychislenie funktsionala kachestva”, Zhurnal Srednevolzhskogo Mat. Obschestva, 17:2 (2015), 85–95 | Zbl
[21] Yuldashev T. K., “Predelnaya zadacha dlya sistemy integro-differentsialnykh uravnenii s dvukhtochechnymi smeshannymi maksimumami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 1:16 (2008), 15–22 | Zbl
[22] Berdyshev A. S., Kadirkulov B. J. On a nonlocal problem for a fourth-order parabolic equation with the fractional Dzhrbashyan–Nersesyan operator, Differ. Equations, 52:1 (2016), 122–127 | DOI | MR | Zbl
[23] Malik S. A., Aziz S. An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions, Comput. Math. Appl., 73:12 (2017), 2548–2560 | DOI | MR | Zbl
[24] Erdelyi A., Higher transcendental functions (Bateman Manuscript Project), v. 1, California Institute of Technology, McGraw-Hill New York, 1953 | MR
[25] Chen S., Shen J., Wang L., “Generalized Jacobi functions and their applications to fractional differential equations”, Math. Comp., 85 (2016), 1603–1638 | DOI | MR | Zbl
[26] Filatov A.N., Sharova L.V., Integralnye neravenstva i teoriya nelineinykh kolebanii, Nauka, M., 1976, 152 pp.