Computational aspects of the partition enumeration problem
Daghestan Electronic Mathematical Reports, Tome 14 (2020), pp. 1-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problems of performing exact calculations using the classical Kasteleyn formula for calculating the number of perfect matching of a lattice graph are considered. Two tests are formulated that provide the software with automatic correction of the calculation accuracy.
Keywords: formula, calculations, error, testing, programming.
@article{DEMR_2020_14_a0,
     author = {A. M. Magomedov and S. Lawrencenko},
     title = {Computational aspects of the partition enumeration problem},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {14},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2020_14_a0/}
}
TY  - JOUR
AU  - A. M. Magomedov
AU  - S. Lawrencenko
TI  - Computational aspects of the partition enumeration problem
JO  - Daghestan Electronic Mathematical Reports
PY  - 2020
SP  - 1
EP  - 21
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2020_14_a0/
LA  - ru
ID  - DEMR_2020_14_a0
ER  - 
%0 Journal Article
%A A. M. Magomedov
%A S. Lawrencenko
%T Computational aspects of the partition enumeration problem
%J Daghestan Electronic Mathematical Reports
%D 2020
%P 1-21
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2020_14_a0/
%G ru
%F DEMR_2020_14_a0
A. M. Magomedov; S. Lawrencenko. Computational aspects of the partition enumeration problem. Daghestan Electronic Mathematical Reports, Tome 14 (2020), pp. 1-21. http://geodesic.mathdoc.fr/item/DEMR_2020_14_a0/

[1] Kasteleyn P.W., “The statistic of dimers on a lattice I: The number of dimer arrangements on quadratic lattice”, Physica, 27 (1961), 1209–-1225 | DOI | Zbl

[2] Valiant L.G., “The complexity of computing the permanent”, Theoretical Computer Science, 8 (1979), 189–201 | DOI | MR | Zbl

[3] Geri M., Dzhonson D., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp.

[4] Lovas L., Plammer M., Prikladnye zadachi teorii grafov. Teoriya parosochetanii v matematike, fizike, khimii, Mir, M., 1998, 653 pp.

[5] Egerev V.K., Zaitsev V.V., Kordemskii B.A. i dr., Sbornik zadach po matematike dlya postupayuschikh v vuzy, pod red. Skanavi M.M., 6-e izd., OOO «Izdatelstvo «Mir i obrazovanie», M.; OOO «Izdatelstvo «ONIKS-LIT», 2013, 608 pp.

[6] Klarner D. and Pollack J., “Domino tilings of rectangles with fixed width”, Discrete Mathematics, 32 (1980), 45–52 | DOI | MR | Zbl

[7] Read Ronald C., “A note on tiling rectangles with dominoes”, Fib. Q., 18:1 (1980), 24–27 | MR | Zbl

[8] Magomedov A.M., Magomedov T.A., Lavrenchenko S.A., “Vzaimno-rekurrentnye formuly dlya perechisleniya razbienii pryamougolnika”, Prikladnaya diskretnaya matematika, 46 (2019), 108–121 | Zbl

[9] Jean-Luc Michel, Domino tilings of rectangles with fixed width, Universite Libre de Bruxelles, Faculte des Sciences Appliquees Service de Mathematiques

[10] Extreme.Numerics [elektronnyi resurs]

[11] Domino tiling [elektronnyi resurs]

[12] Elliot V. Montroll., “Statistika reshetok”, Prikladnaya kombinatornaya matematika, Sbornik statei pod redaktsiei E.Bekkenbakha, Mir, M., 1968