Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2020_13_a2, author = {T. K. Yuldashev (Iuldashev) and Zh. A. Artykova}, title = {Initial problem for a nonlinear integro-differential equation with a higher-order hyperbolic operator and with reflection of the argument}, journal = {Daghestan Electronic Mathematical Reports}, pages = {31--56}, publisher = {mathdoc}, volume = {13}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2020_13_a2/} }
TY - JOUR AU - T. K. Yuldashev (Iuldashev) AU - Zh. A. Artykova TI - Initial problem for a nonlinear integro-differential equation with a higher-order hyperbolic operator and with reflection of the argument JO - Daghestan Electronic Mathematical Reports PY - 2020 SP - 31 EP - 56 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2020_13_a2/ LA - ru ID - DEMR_2020_13_a2 ER -
%0 Journal Article %A T. K. Yuldashev (Iuldashev) %A Zh. A. Artykova %T Initial problem for a nonlinear integro-differential equation with a higher-order hyperbolic operator and with reflection of the argument %J Daghestan Electronic Mathematical Reports %D 2020 %P 31-56 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2020_13_a2/ %G ru %F DEMR_2020_13_a2
T. K. Yuldashev (Iuldashev); Zh. A. Artykova. Initial problem for a nonlinear integro-differential equation with a higher-order hyperbolic operator and with reflection of the argument. Daghestan Electronic Mathematical Reports, Tome 13 (2020), pp. 31-56. http://geodesic.mathdoc.fr/item/DEMR_2020_13_a2/
[1] Zamyshlyaeva A.A., “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestnik Yuzhno-UralGU. Seriya: Matem. modelir. i programmirovanie., 7:2 (2014), 5–28. | Zbl
[2] Karimov Sh.T., “Ob odnom metode resheniya zadachi Koshi dlya odnomernogo polivolnovogo uravneniya s singulyarnym operatorom Besselya”, Izvestiya vuzov. Matematika, 2017, no. 8, 27–41. | Zbl
[3] Koshanov B. D., Soldatov A. P., “Kraevaya zadacha s normalnymi proizvodnymi dlya ellipticheskogo uravneniya vysokogo poryadka na ploskosti”, Differents. uravneniya., 52:12 (2016), 1666–1681. | MR | Zbl
[4] Pokhozhaev S. I., “O razreshimosti kvazilineinykh ellipticheskikh uravnenii proizvolnogo poryadka”, Matem. sbornik, 117:2 (1982), 251–265 | MR | Zbl
[5] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973, 219 pp. | MR
[6] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s parabolicheskim operatorom vysokoi stepeni”, Zhurnal vychisl. matem. i matem. fiziki, 52:1 (2012), 112–123 | MR | Zbl
[7] Yuldasheva A. V., “Ob odnoi zadache dlya kvazilineinogo uravneniya chetnogo poryadka”, Differentsialnye uravneniya. Matematicheskaya fizika, Itogi nauki i tekhniki. Ser. Sovrem. mat. i ee pril. Temat. obz., 140, VINITI RAN, M., 2017, 43–49 | MR
[8] Karimov Sh. T., “Multidimensional generalized Erd$\grave e$lyi-Kober operator and its application to solving Cauchy problems for differential equations with singular coefficients”, Fractional calculus and applied analysis, 18:4 (2015), 845–861 | DOI | MR | Zbl
[9] Boichuk A. A., Strakh A. P., “Neterovy kraevye zadachi dlya sistem lineinykh integro-dinamicheskikh uravnenii s vyrozhdennym yadrom na vremennoi shkale”, Nelineinye kolebaniya, 17:1 (2014), 32–38
[10] Dzhumabaev D. S., Bakirova E. A., “Ob odnoznachnoi razreshimosti kraevoi zadachi dlya sistem integro-differentsialnykh uravnenii Fredgolma s vyrozhdennym yadrom”, Nelineinye kolebaniya, 18:4 (2015), 489–506 | MR
[11] Yuldashev T. K., “Razreshimost i opredelenie koeffitsienta v odnoi kraevoi zadache dlya integro-differentsialnogo uravneniya Fredgolma s vyrozhdennym yadrom”, Doklady NAN Ukrainy, 2017, no. 5, 8–16 | MR | Zbl
[12] Yuldashev T. K., “Ob odnoi nelokalnoi zadache dlya neodnorodnogo integro-differentsialnogo uravneniya tipa Bussineska s vyrozhdennym yadrom”, Uchenye zapiski Kazanskogo universiteta. Ser. Fiz.-mat. nauki, 159, no. 1, 2017, 88–99
[13] Yuldashev T. K., “Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel”, Lobachevskii journal of mathematics., 38:3 (2017), 543–553 | DOI | MR
[14] Samoilenko A. M., Boichuk A. A., Krivosheya S. A., “Boundary-Value problems for systems of integro-differential equations with Degenerate Kernel”, Ukr. Math. Journal, 48:11 (1996), 1785–1789 | DOI | MR | Zbl
[15] Ushakov E. I., Staticheskaya ustoichivost elektricheskikh tsepei, Nauka, Novosibirsk, 1988, 273 pp.
[16] Yuldashev T. K., “Ob odnoi nelokalnoi kraevoi zadache dlya nelineinogo integro-differentsialnogo uravneniya Fredgolma s vyrozhdeniem yadra”, Differents. uravneniya, 54:12 (2018), 1687–1694 | MR | Zbl
[17] Yuldashev T. K., “O razreshimosti odnoi kraevoi zadachi dlya obyknovennogo integro-differentsialnogo uravneniya Fredgolma s vyrozhdennym yadrom”, Zhurn. vychisl. matematiki i mat. fiziki., 59:2 (2019), 252–263 | Zbl
[18] Cavalcanti M. M., Domingos Cavalcanti V. N., Ferreira J., “Existence and uniform decay for a nonlinear viscoelastic equation with strong damping”, Math. Methods in the Appl. Sciences, 24 (2001), 1043–1053 | DOI | MR | Zbl
[19] Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka, Mekhmat MGU, M, 1999, 95 pp.
[20] Imanaliev M. I., Ved Yu. A., “O differentsialnom uravnenii v chastnykh proizvodnykh pervogo poryadka s integralnym koeffitsientom”, Differents. uravneniya, 23:3 (1989), 465–477
[21] Yuldashev T. K., “Ob obratnoi zadache dlya kvazilineinogo uravneniya v chastnykh proizvodnykh pervogo poryadka”, Vestnik TomGU. Matematika i Mekhanika, 2012, no. 2, 56–62
[22] Yuldashev T. K., “Ob obratnoi zadache dlya sistemy kvazilineinykh uravnenii v chastnykh proizvodnykh pervogo poryadka”, Vestnik Yuzhno-UralGU. Seriya: Matematika. Mekhanika. Fizika, 6:11 (270) (2012), 35–41 | Zbl