Initial problem for a nonlinear integro-differential equation with a higher-order hyperbolic operator and with reflection of the argument
Daghestan Electronic Mathematical Reports, Tome 13 (2020), pp. 31-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is studied the questions of one value solvability of initial value problem for nonlinear integro-differential equation with hyperbolic operator of the higher order, with degenerate kernel and reflective argument for regular values of spectral parameter. It is expressed the partial differential operator on the left-hand side of equation of higher order by the superposition of first-order partial differential operators. This is allowed us to present the considering integro-differential equation as an integral equation, describing the change of the unknown function along the characteristic. Further is applied the method of degenerate kernel. In proof of the theorem on one-value solvability of initial value problem is applied the method of successive approximations. Also is proved the stability of this solution with respect to the initial functions.
Keywords: initial value problem, degenerate kernel, superposition of differential operators, hyperbolic operator of higher order, reflecting argument, one value solvability.
@article{DEMR_2020_13_a2,
     author = {T. K. Yuldashev (Iuldashev) and Zh. A. Artykova},
     title = {Initial problem for a nonlinear integro-differential equation with a higher-order hyperbolic operator and with reflection of the argument},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {31--56},
     publisher = {mathdoc},
     volume = {13},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2020_13_a2/}
}
TY  - JOUR
AU  - T. K. Yuldashev (Iuldashev)
AU  - Zh. A. Artykova
TI  - Initial problem for a nonlinear integro-differential equation with a higher-order hyperbolic operator and with reflection of the argument
JO  - Daghestan Electronic Mathematical Reports
PY  - 2020
SP  - 31
EP  - 56
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2020_13_a2/
LA  - ru
ID  - DEMR_2020_13_a2
ER  - 
%0 Journal Article
%A T. K. Yuldashev (Iuldashev)
%A Zh. A. Artykova
%T Initial problem for a nonlinear integro-differential equation with a higher-order hyperbolic operator and with reflection of the argument
%J Daghestan Electronic Mathematical Reports
%D 2020
%P 31-56
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2020_13_a2/
%G ru
%F DEMR_2020_13_a2
T. K. Yuldashev (Iuldashev); Zh. A. Artykova. Initial problem for a nonlinear integro-differential equation with a higher-order hyperbolic operator and with reflection of the argument. Daghestan Electronic Mathematical Reports, Tome 13 (2020), pp. 31-56. http://geodesic.mathdoc.fr/item/DEMR_2020_13_a2/

[1] Zamyshlyaeva A.A., “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestnik Yuzhno-UralGU. Seriya: Matem. modelir. i programmirovanie., 7:2 (2014), 5–28. | Zbl

[2] Karimov Sh.T., “Ob odnom metode resheniya zadachi Koshi dlya odnomernogo polivolnovogo uravneniya s singulyarnym operatorom Besselya”, Izvestiya vuzov. Matematika, 2017, no. 8, 27–41. | Zbl

[3] Koshanov B. D., Soldatov A. P., “Kraevaya zadacha s normalnymi proizvodnymi dlya ellipticheskogo uravneniya vysokogo poryadka na ploskosti”, Differents. uravneniya., 52:12 (2016), 1666–1681. | MR | Zbl

[4] Pokhozhaev S. I., “O razreshimosti kvazilineinykh ellipticheskikh uravnenii proizvolnogo poryadka”, Matem. sbornik, 117:2 (1982), 251–265 | MR | Zbl

[5] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Naukova dumka, Kiev, 1973, 219 pp. | MR

[6] Yuldashev T. K., “Smeshannaya zadacha dlya nelineinogo integro-differentsialnogo uravneniya s parabolicheskim operatorom vysokoi stepeni”, Zhurnal vychisl. matem. i matem. fiziki, 52:1 (2012), 112–123 | MR | Zbl

[7] Yuldasheva A. V., “Ob odnoi zadache dlya kvazilineinogo uravneniya chetnogo poryadka”, Differentsialnye uravneniya. Matematicheskaya fizika, Itogi nauki i tekhniki. Ser. Sovrem. mat. i ee pril. Temat. obz., 140, VINITI RAN, M., 2017, 43–49 | MR

[8] Karimov Sh. T., “Multidimensional generalized Erd$\grave e$lyi-Kober operator and its application to solving Cauchy problems for differential equations with singular coefficients”, Fractional calculus and applied analysis, 18:4 (2015), 845–861 | DOI | MR | Zbl

[9] Boichuk A. A., Strakh A. P., “Neterovy kraevye zadachi dlya sistem lineinykh integro-dinamicheskikh uravnenii s vyrozhdennym yadrom na vremennoi shkale”, Nelineinye kolebaniya, 17:1 (2014), 32–38

[10] Dzhumabaev D. S., Bakirova E. A., “Ob odnoznachnoi razreshimosti kraevoi zadachi dlya sistem integro-differentsialnykh uravnenii Fredgolma s vyrozhdennym yadrom”, Nelineinye kolebaniya, 18:4 (2015), 489–506 | MR

[11] Yuldashev T. K., “Razreshimost i opredelenie koeffitsienta v odnoi kraevoi zadache dlya integro-differentsialnogo uravneniya Fredgolma s vyrozhdennym yadrom”, Doklady NAN Ukrainy, 2017, no. 5, 8–16 | MR | Zbl

[12] Yuldashev T. K., “Ob odnoi nelokalnoi zadache dlya neodnorodnogo integro-differentsialnogo uravneniya tipa Bussineska s vyrozhdennym yadrom”, Uchenye zapiski Kazanskogo universiteta. Ser. Fiz.-mat. nauki, 159, no. 1, 2017, 88–99

[13] Yuldashev T. K., “Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel”, Lobachevskii journal of mathematics., 38:3 (2017), 543–553 | DOI | MR

[14] Samoilenko A. M., Boichuk A. A., Krivosheya S. A., “Boundary-Value problems for systems of integro-differential equations with Degenerate Kernel”, Ukr. Math. Journal, 48:11 (1996), 1785–1789 | DOI | MR | Zbl

[15] Ushakov E. I., Staticheskaya ustoichivost elektricheskikh tsepei, Nauka, Novosibirsk, 1988, 273 pp.

[16] Yuldashev T. K., “Ob odnoi nelokalnoi kraevoi zadache dlya nelineinogo integro-differentsialnogo uravneniya Fredgolma s vyrozhdeniem yadra”, Differents. uravneniya, 54:12 (2018), 1687–1694 | MR | Zbl

[17] Yuldashev T. K., “O razreshimosti odnoi kraevoi zadachi dlya obyknovennogo integro-differentsialnogo uravneniya Fredgolma s vyrozhdennym yadrom”, Zhurn. vychisl. matematiki i mat. fiziki., 59:2 (2019), 252–263 | Zbl

[18] Cavalcanti M. M., Domingos Cavalcanti V. N., Ferreira J., “Existence and uniform decay for a nonlinear viscoelastic equation with strong damping”, Math. Methods in the Appl. Sciences, 24 (2001), 1043–1053 | DOI | MR | Zbl

[19] Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka, Mekhmat MGU, M, 1999, 95 pp.

[20] Imanaliev M. I., Ved Yu. A., “O differentsialnom uravnenii v chastnykh proizvodnykh pervogo poryadka s integralnym koeffitsientom”, Differents. uravneniya, 23:3 (1989), 465–477

[21] Yuldashev T. K., “Ob obratnoi zadache dlya kvazilineinogo uravneniya v chastnykh proizvodnykh pervogo poryadka”, Vestnik TomGU. Matematika i Mekhanika, 2012, no. 2, 56–62

[22] Yuldashev T. K., “Ob obratnoi zadache dlya sistemy kvazilineinykh uravnenii v chastnykh proizvodnykh pervogo poryadka”, Vestnik Yuzhno-UralGU. Seriya: Matematika. Mekhanika. Fizika, 6:11 (270) (2012), 35–41 | Zbl