Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2020_13_a0, author = {M. Saouli and B. Mansouri}, title = {Anticipated backward doubly stochastic differential equations driven by {Teugels} martingales with or without reflecting barrier}, journal = {Daghestan Electronic Mathematical Reports}, pages = {1--21}, publisher = {mathdoc}, volume = {13}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DEMR_2020_13_a0/} }
TY - JOUR AU - M. Saouli AU - B. Mansouri TI - Anticipated backward doubly stochastic differential equations driven by Teugels martingales with or without reflecting barrier JO - Daghestan Electronic Mathematical Reports PY - 2020 SP - 1 EP - 21 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2020_13_a0/ LA - en ID - DEMR_2020_13_a0 ER -
%0 Journal Article %A M. Saouli %A B. Mansouri %T Anticipated backward doubly stochastic differential equations driven by Teugels martingales with or without reflecting barrier %J Daghestan Electronic Mathematical Reports %D 2020 %P 1-21 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2020_13_a0/ %G en %F DEMR_2020_13_a0
M. Saouli; B. Mansouri. Anticipated backward doubly stochastic differential equations driven by Teugels martingales with or without reflecting barrier. Daghestan Electronic Mathematical Reports, Tome 13 (2020), pp. 1-21. http://geodesic.mathdoc.fr/item/DEMR_2020_13_a0/
[1] Bahlali K., Hassani M., Mansouri B., Mrhardy N., “One barrier reflected backward doubly stochastic differential equations with continuous generator”, Comptes Rendus Mathematique, 347:19 (2009), 59–68 | DOI | MR
[2] Bertoin J., Levy Processes, Cambridge University Press, Cambridge–London, 1996 | MR | Zbl
[3] Nualart D. and Schoutens W., “Chaotic and predictable representation for Levy process”, Stochastic Process. Appl., 90 (2000), 109–122 | DOI | MR | Zbl
[4] Nualart D. and Schoutens W., “Backward stochastic differential equations and Feynman–Kac formula for Levy processes, with applications in finance”, Bernoulli., 5 (2001), 761–776 | DOI | MR | Zbl
[5] Pardoux E., Peng S., “Adapted solution of a backward stochastic differential equation”, Systems Control Lett., 4 (1990), 55–61 | DOI | MR
[6] Pardoux E., Peng S., “Backward doubly stochastic differential equations and systems of quasili near SPDEs”, Probability Theory and Related Fields, 98 (1994), 209–227 | DOI | MR | Zbl
[7] Peng S. and Yang Z., “Anticipated backward stochastic differential equations”, Ann. Probab., 37 (2009), 877–902 | DOI | MR | Zbl
[8] Ren Y., Lin A., Hu L., “Stochastic PDIEs and backward doubly stochastic differential equations driven by Levy processes”, Computational and Applied Mathematics, 223 (2009), 901–907 | DOI | MR | Zbl
[9] Ren Y., “Reflected backward doubly stochastic differential equations driven by Levy processes”, C.R. Acad. Sci. Paris Ser. I., 384 (2010), 439–444 | DOI | MR
[10] Xu X., “Anticipated backward doubly stochastic differential equations”, Appl. Math. Comput., 22 (2013). 53–62 | MR
[11] Zong G., “Anticipated backward stochastic differential equations driven by the Teugels martingales”, Mathematical Analysis and Applications, 412:2 (2014), 989–997 | DOI | MR | Zbl