On uniform convergence of Fourier-Sobolev series
Daghestan Electronic Mathematical Reports, Tome 12 (2019), pp. 55-61

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\varphi_{k}\}_{k=0}^\infty$ be a system of functions defined on $ [a, b] $ and orthonormal in $ L ^ 2_ \rho = L ^ 2_\rho ( a, b) $ with respect to the usual inner product. For a given positive integer $ r $, by $\{\varphi_{r,k}\}_{k=0}^\infty$ we denote the system of functions orthonormal with respect to the Sobolev-type inner product and generated by the system $\{\varphi_{k}\}_{k=0}^\infty$. In this paper, we study the question of the uniform convergence of the Fourier series by the system of functions $\{\varphi_{r,k}\}_{k=0}^\infty$ to the functions $f\in W^r_{L^p_\rho}$ in the case when the original system $\{\varphi_{k}\}_{k=0}^\infty$ forms a basis in the space $L^p_\rho=L^p_\rho(a,b)$ ($1\le p$, $p\neq2$).
Keywords: Fourier series; Sobolev-type inner product; Sobolev space; Sobolev-orthonormal functions.
@article{DEMR_2019_12_a4,
     author = {T. N. Shakh-Emirov},
     title = {On uniform convergence of {Fourier-Sobolev} series},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {55--61},
     publisher = {mathdoc},
     volume = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2019_12_a4/}
}
TY  - JOUR
AU  - T. N. Shakh-Emirov
TI  - On uniform convergence of Fourier-Sobolev series
JO  - Daghestan Electronic Mathematical Reports
PY  - 2019
SP  - 55
EP  - 61
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2019_12_a4/
LA  - ru
ID  - DEMR_2019_12_a4
ER  - 
%0 Journal Article
%A T. N. Shakh-Emirov
%T On uniform convergence of Fourier-Sobolev series
%J Daghestan Electronic Mathematical Reports
%D 2019
%P 55-61
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2019_12_a4/
%G ru
%F DEMR_2019_12_a4
T. N. Shakh-Emirov. On uniform convergence of Fourier-Sobolev series. Daghestan Electronic Mathematical Reports, Tome 12 (2019), pp. 55-61. http://geodesic.mathdoc.fr/item/DEMR_2019_12_a4/