The study of magnetic dendrimer models by the Wang-Landau method
Daghestan Electronic Mathematical Reports, Tome 12 (2019), pp. 1-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

By the Wang-Landau algorithm of the entropy Monte Carlo method the thermodynamic properties of the magnetic dendrimers at different values of the exchange interaction are studied. The density of states of the system are calculated and the magnetic structure of the ground state defined. The temperature dependence of the various thermodynamic parameters, such as the magnetization m, entropy S, the internal energy E and the heat capacity C are calculated. It is shown that in the studied model dendrimer magnetic influence of surface units in the overall picture of the system behavior with increasing system size unabated.
Keywords: Dendrimers, magnetism, phase transition, the structure of the ground state, the density of states, the Wang-Landau algorithm, Monte Carlo method.
@article{DEMR_2019_12_a0,
     author = {M. A. Magomedov and A. K. Murtazaev and M. M. Isaeva},
     title = {The study of magnetic dendrimer models by the {Wang-Landau} method},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2019_12_a0/}
}
TY  - JOUR
AU  - M. A. Magomedov
AU  - A. K. Murtazaev
AU  - M. M. Isaeva
TI  - The study of magnetic dendrimer models by the Wang-Landau method
JO  - Daghestan Electronic Mathematical Reports
PY  - 2019
SP  - 1
EP  - 12
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2019_12_a0/
LA  - ru
ID  - DEMR_2019_12_a0
ER  - 
%0 Journal Article
%A M. A. Magomedov
%A A. K. Murtazaev
%A M. M. Isaeva
%T The study of magnetic dendrimer models by the Wang-Landau method
%J Daghestan Electronic Mathematical Reports
%D 2019
%P 1-12
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2019_12_a0/
%G ru
%F DEMR_2019_12_a0
M. A. Magomedov; A. K. Murtazaev; M. M. Isaeva. The study of magnetic dendrimer models by the Wang-Landau method. Daghestan Electronic Mathematical Reports, Tome 12 (2019), pp. 1-12. http://geodesic.mathdoc.fr/item/DEMR_2019_12_a0/

[1] Biricova V., Laznickova A., “Dendrimers: Analytical characterization and applications”, Bioorg. Chem, 37 (2009), 185–192 | DOI

[2] Boas U., Heegaard P.M., “Dendrimers in drug research”, Chem. Soc. Rev., 33 (2004), 43–63 | DOI

[3] Pan B., Gao F., Ao L., “Investigation of interactions between dendrimer-coated magnetite nanoparticles and bovine serum albumin”, J. Magn Mater., 293 (2005), 252–258 | DOI

[4] Mintzer M.A., Grinstaff M.W., “Biomedical applications of dendrimers: a tutorial”, Chem Soc Rev., 40 (2011), 173–190 | DOI

[5] Klos J.S., Sommer J.U., “Dendrimer solutions: a Monte Carlo study”, Soft Matter., 12 (2016), 9007–9013 | DOI

[6] Jabar A., Masrour R., “Dendrimer-magnetic nanostructure: a Monte Carlo simulation”, Phase Trans., 90 (2017), 1112–1120 | DOI

[7] Lee C.C., MacKay J.A., Fréchet J.M.J., Szoka F.C., “Designing dendrimers for biological applications”, Nat. Biotechnol, 23 (2005), 1517–1526 | DOI

[8] Magomedov M.A., Murtazaev A.K., Magomedova L.K., “Issledovanie modeli Izinga na geksagonalnoi reshetke metodom Vanga–Landau”, Vestnik DGU, 31:4 (2016), 71–76

[9] Murtazaev A.K., Babaev A.B., Magomedov M.A., Kassan-Ogly F.A., Proshkin A.I., “Three-state Potts model on triangular lattice with nearest-neighbor and next-nearest-neighbor antiferromagnetic interactions”, Solid State Communications, 246 (2016), 41–46 | DOI

[10] Magomedov M.A., Murtazaev A.K., Magomedova L.K., “Plotnost sostoyaniya i entropiya modeli Izinga na geksagonalnoi reshetke s uchetom vzaimodeistviya vtorykh blizhaishikh sosedei”, Vestnik DGU, 31:1 (2016), 43–50

[11] Magomedov M.A., Murtazaev A.K., “Plotnost sostoyanii i struktura osnovnogo sostoyaniya modeli Izinga na reshetke Kagome s uchetom vzaimodeistviya blizhaishikh i sleduyuschikh sosedei”, FTT, 60 (2018), 1173–1177

[12] Wang F., Landau D.P., “Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram”, Phys. Rev. E., 64 (2001), 1173–1177

[13] Landau D.P., Tsai S.-H., Exler M., “A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling”, Am. J. Phys., 72 (2004), 1294–1302 | DOI

[14] Silva C.J., Caparica A.A., Plascak J.A., “Wang-Landau Monte Carlo simulation of the Blume-Capel model”, Phys. Rev. E., 73 (2006) | Zbl

[15] Ramazanov M.K., Murtazaev A.K., Magomedov M.A., “Thermodynamic, critical properties and phase transitions of the Ising model on a square lattice with competing interactions”, Solid State Communications, 233 (2016), 35–40 | DOI

[16] Ramazanov M.K., Murtazaev A.K., Magomedov M.A., “Phase diagrams and ground-state structures of the Potts model on a triangular lattice”, Physica A., 521 (2019), 543–550 | DOI

[17] Murtazaev A.K. Ramazanov M.K., Mazagaeva M.K., Magomedov M.A., “Fazovye perekhody i termodinamicheskie svoistva modeli Pottsa s chislom sostoyanii spina $q=4$ na geksagonalnoi reshetke”, ZhETF, 156 (2019), 503–507

[18] Cunha-Netto A.G., Caparica A.A., Tsai S.H., Dickman R., Landau D.P., “Improving Wang-Landau sampling with adaptive windows”, Phys. Rev. E., 78 (2008) | DOI