An algorithm for fast discrete transformation for Fourier sums over Sobolev orthogonal polynomials generated by Chebyshev polynomials of the first kind
Daghestan Electronic Mathematical Reports, no. 9 (2018), pp. 52-61
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the problem of numerical realization of linear combinations $S_N(x) =\sum\nolimits_{k=0}^{N-1}p_kT_{1,k+1}(x)$, where $T_{1,n}(x)$ $(n=0,1,\ldots)$ are Sobolev orthogonal polynomials generated by Chebyshev polynomials of of the first kind $T_{0} = 1 / \sqrt{2}$, $T_{n}(x)=\cos( n\arccos x)$ ($n \in \mathbb{N}$) as follows $T_{1,0}=1$, $T_{1,n+1}(x) =\int_{-1}^x T_{n}(t)dt$ $(n=1,\ldots)$. To solve this problem on the grid $x_j=\cos\frac{(2j+1)\pi}{2M}$ $(0\le j\le M-1)$ a number transformations of expression $S_N(x)$ are applied, which allows to reduce the problem under consideration to the application of a fast discrete Fourier transform. The corresponding algorithm and program in the language C# have been developed. The numerical experiments with using this program show that algorithm based on fast transform is significantly faster than method based on direct calculation of $S_N(x)$ with using explicit formulas for $T_{1,n}(x)$.
Keywords:
Chebyshev polynomials, discrete cosine transform.
Mots-clés : Sobolev orthogonal polynomials, fast Fourier transform
Mots-clés : Sobolev orthogonal polynomials, fast Fourier transform
@article{DEMR_2018_9_a5,
author = {M. S. Sultanakhmedov and T. N. Shakh-Emirov},
title = {An algorithm for fast discrete transformation for {Fourier} sums over {Sobolev} orthogonal polynomials generated by {Chebyshev} polynomials of the first kind},
journal = {Daghestan Electronic Mathematical Reports},
pages = {52--61},
year = {2018},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DEMR_2018_9_a5/}
}
TY - JOUR AU - M. S. Sultanakhmedov AU - T. N. Shakh-Emirov TI - An algorithm for fast discrete transformation for Fourier sums over Sobolev orthogonal polynomials generated by Chebyshev polynomials of the first kind JO - Daghestan Electronic Mathematical Reports PY - 2018 SP - 52 EP - 61 IS - 9 UR - http://geodesic.mathdoc.fr/item/DEMR_2018_9_a5/ LA - ru ID - DEMR_2018_9_a5 ER -
%0 Journal Article %A M. S. Sultanakhmedov %A T. N. Shakh-Emirov %T An algorithm for fast discrete transformation for Fourier sums over Sobolev orthogonal polynomials generated by Chebyshev polynomials of the first kind %J Daghestan Electronic Mathematical Reports %D 2018 %P 52-61 %N 9 %U http://geodesic.mathdoc.fr/item/DEMR_2018_9_a5/ %G ru %F DEMR_2018_9_a5
M. S. Sultanakhmedov; T. N. Shakh-Emirov. An algorithm for fast discrete transformation for Fourier sums over Sobolev orthogonal polynomials generated by Chebyshev polynomials of the first kind. Daghestan Electronic Mathematical Reports, no. 9 (2018), pp. 52-61. http://geodesic.mathdoc.fr/item/DEMR_2018_9_a5/
[1] F. Marcellan and Yuan Xu, “On Sobolev orthogonal polynomials”, Expositiones Mathematicae, 33:3 (2015), 308–352 | DOI | Zbl
[2] Sharapudinov I.I., “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. matem., 82:1 (2018), 225–258 | Zbl
[3] K. Rao, P. Yip, Discrete Cosine Transform. Algorithms, Advantages, Applications. 1st Edition, Academic Press, 2014, 512 pp.