Mots-clés : ODE
@article{DEMR_2018_9_a4,
author = {I. I. Sharapudinov},
title = {An approximate solution of the {Cauchy} problem for an {ODE} system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$},
journal = {Daghestan Electronic Mathematical Reports},
pages = {33--51},
year = {2018},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DEMR_2018_9_a4/}
}
TY - JOUR
AU - I. I. Sharapudinov
TI - An approximate solution of the Cauchy problem for an ODE system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$
JO - Daghestan Electronic Mathematical Reports
PY - 2018
SP - 33
EP - 51
IS - 9
UR - http://geodesic.mathdoc.fr/item/DEMR_2018_9_a4/
LA - ru
ID - DEMR_2018_9_a4
ER -
%0 Journal Article
%A I. I. Sharapudinov
%T An approximate solution of the Cauchy problem for an ODE system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$
%J Daghestan Electronic Mathematical Reports
%D 2018
%P 33-51
%N 9
%U http://geodesic.mathdoc.fr/item/DEMR_2018_9_a4/
%G ru
%F DEMR_2018_9_a4
I. I. Sharapudinov. An approximate solution of the Cauchy problem for an ODE system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$. Daghestan Electronic Mathematical Reports, no. 9 (2018), pp. 33-51. http://geodesic.mathdoc.fr/item/DEMR_2018_9_a4/
[1] Sharapudinov I.I., “O priblizhenii resheniya zadachi Koshi dlya nelineinykh sistem ODU posredstvom ryadov Fure po funktsiyam, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 66–76
[2] Sharapudinov I.I., Magomed-Kasumov M.G., “Chislennyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi sistemoi kosinusov”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 53–60
[3] Sharapudinov I.I., “Sistemy funktsii, ortogonalnye po Sobolevu, porozhdennye ortogonalnymi funktsiyami”, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly В«Sovremennye problemy teorii funktsii i ikh prilozheniyaВ», OOO В«Izdatelstvo В«Nauchnaya knigaВ», Saratov, 2016, 329-332
[4] Magomed-Kasumov M.G., “Priblizhennoe reshenie obyknovennykh differentsialnykh uravnenii s ispolzovaniem smeshannykh ryadov po sisteme Khaara”, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly В«Sovremennye problemy teorii funktsii i ikh prilozheniyaВ», OOO В«Izdatelstvo В«Nauchnaya knigaВ», Saratov, 2016, 176-178
[5] Sharapudinov I.I., “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. matem., 82:1 (2018), 225–258 | Zbl
[6] F. Marcellan and Yuan Xu, “On Sobolev orthogonal polynomials”, Expositiones Mathematicae, 33:3 (2015), 308–352 | DOI | Zbl
[7] Sharapudinov I.I., “Smeshannye ryady po ultrasfericheskim polinomam i ikh approksimativnye svoistva”, Matematicheskii sbornik, 194:3 (2003), 115–148 | Zbl
[8] Sharapudinov I.I., Smeshannye ryady po ortogonalnym polinomam, Izdatelstvo Dagestanskogo nauchnogo tsentra, Makhachkala, 2004, 176 pp.