Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2018_9_a4, author = {I. I. Sharapudinov}, title = {An approximate solution of the {Cauchy} problem for an {ODE} system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$}, journal = {Daghestan Electronic Mathematical Reports}, pages = {33--51}, publisher = {mathdoc}, volume = {9}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2018_9_a4/} }
TY - JOUR AU - I. I. Sharapudinov TI - An approximate solution of the Cauchy problem for an ODE system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$ JO - Daghestan Electronic Mathematical Reports PY - 2018 SP - 33 EP - 51 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2018_9_a4/ LA - ru ID - DEMR_2018_9_a4 ER -
%0 Journal Article %A I. I. Sharapudinov %T An approximate solution of the Cauchy problem for an ODE system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$ %J Daghestan Electronic Mathematical Reports %D 2018 %P 33-51 %V 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2018_9_a4/ %G ru %F DEMR_2018_9_a4
I. I. Sharapudinov. An approximate solution of the Cauchy problem for an ODE system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$. Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 33-51. http://geodesic.mathdoc.fr/item/DEMR_2018_9_a4/
[1] Sharapudinov I.I., “O priblizhenii resheniya zadachi Koshi dlya nelineinykh sistem ODU posredstvom ryadov Fure po funktsiyam, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 66–76
[2] Sharapudinov I.I., Magomed-Kasumov M.G., “Chislennyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi sistemoi kosinusov”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 53–60
[3] Sharapudinov I.I., “Sistemy funktsii, ortogonalnye po Sobolevu, porozhdennye ortogonalnymi funktsiyami”, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», OOO «Izdatelstvo «Nauchnaya kniga», Saratov, 2016, 329-332
[4] Magomed-Kasumov M.G., “Priblizhennoe reshenie obyknovennykh differentsialnykh uravnenii s ispolzovaniem smeshannykh ryadov po sisteme Khaara”, Materialy 18-i mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», OOO «Izdatelstvo «Nauchnaya kniga», Saratov, 2016, 176-178
[5] Sharapudinov I.I., “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. matem., 82:1 (2018), 225–258 | Zbl
[6] F. Marcellan and Yuan Xu, “On Sobolev orthogonal polynomials”, Expositiones Mathematicae, 33:3 (2015), 308–352 | DOI | Zbl
[7] Sharapudinov I.I., “Smeshannye ryady po ultrasfericheskim polinomam i ikh approksimativnye svoistva”, Matematicheskii sbornik, 194:3 (2003), 115–148 | Zbl
[8] Sharapudinov I.I., Smeshannye ryady po ortogonalnym polinomam, Izdatelstvo Dagestanskogo nauchnogo tsentra, Makhachkala, 2004, 176 pp.