Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2018_9_a4, author = {I. I. Sharapudinov}, title = {An approximate solution of the {Cauchy} problem for an {ODE} system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$}, journal = {Daghestan Electronic Mathematical Reports}, pages = {33--51}, publisher = {mathdoc}, volume = {9}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2018_9_a4/} }
TY - JOUR AU - I. I. Sharapudinov TI - An approximate solution of the Cauchy problem for an ODE system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$ JO - Daghestan Electronic Mathematical Reports PY - 2018 SP - 33 EP - 51 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2018_9_a4/ LA - ru ID - DEMR_2018_9_a4 ER -
%0 Journal Article %A I. I. Sharapudinov %T An approximate solution of the Cauchy problem for an ODE system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$ %J Daghestan Electronic Mathematical Reports %D 2018 %P 33-51 %V 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2018_9_a4/ %G ru %F DEMR_2018_9_a4
I. I. Sharapudinov. An approximate solution of the Cauchy problem for an ODE system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$. Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 33-51. http://geodesic.mathdoc.fr/item/DEMR_2018_9_a4/