Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2018_9_a3, author = {M. K. Ramazanov and A. K. Murtazaev}, title = {Computer simulation of critical properties of the frustrated {Ising} model}, journal = {Daghestan Electronic Mathematical Reports}, pages = {26--32}, publisher = {mathdoc}, volume = {9}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2018_9_a3/} }
TY - JOUR AU - M. K. Ramazanov AU - A. K. Murtazaev TI - Computer simulation of critical properties of the frustrated Ising model JO - Daghestan Electronic Mathematical Reports PY - 2018 SP - 26 EP - 32 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2018_9_a3/ LA - ru ID - DEMR_2018_9_a3 ER -
M. K. Ramazanov; A. K. Murtazaev. Computer simulation of critical properties of the frustrated Ising model. Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 26-32. http://geodesic.mathdoc.fr/item/DEMR_2018_9_a3/
[1] Dotsenko V.S., “Critical phenomena and quenched disorder”, Phys. Usp., 38:5 (1995), 457–496 | DOI
[2] Korshunov S.E., “Phase transitions in two-dimensional systems with continuous degeneracy”, Phys. Usp., 49:3 (2006), 225–262 | DOI
[3] Ramazanov M.K., Murtazaev A.K., “Phase transitions and critical characteristics in the layered antiferromagnetic Ising model with next-nearest-neighbor intralayer interactions”, JETP Lett., 101:10 (2015), 714–718 | DOI
[4] Murtazaev A.K., Ramazanov M.K., Badiev M.K., “Critical properties of an antiferromagnetic Ising model ob a square lattice with interactions of the next-to-nearest neighbors”, Low Temp. Phys., 37:12 (2011), 1001–1005 | DOI
[5] Kassan-Ogly F.A., Filippov B.N., Murtazaev A.K., Ramazanov M.K., Badiev M.K., “Influence of field ob frustrations in low-dimensional magnets”, J. Magn. Magm. Mater., 324:21 (2012), 3418–3421 | DOI
[6] Murtazaev A.K., Ramazanov M.K., Badiev M.K., “Phase transitions and critical properties of the frustrated Heisenberg model on a layer triangular lattice with next-to-nearest-neighbor interactions”, J. Exp. Theor. Phys., 115:2 (2012), 303–308 | DOI
[7] Murtazaev A.K., Ramazanov M.K., Badiev M.K., “Critical properties of the two-dimensional Ising model on a square lattice with competing interactions”, Phys. B: Cond. Matt., 476 (2015), 1–5 | DOI
[8] Kassan-Ogly F.A., Murtazaev A.K., Zhuravlev A.K., Ramazanov M.K., Proshkin A.I., “Ising model on a square lattice with second-neighbor and third-neighbor interactions”, J. Magn. Magn. Mater., 384 (2015), 247–254 | DOI
[9] Mitsutake A., Sugita Y., Okamoto Y., “Generalized-Ensemble Algorithms for Molecular Simulations of Biopolymers”, Biopolymers (Peptide Science), 60:2 (2001), 96–123 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[10] Murtazaev A.K., Ramazanov M.K., Kassan-Ogly F.A., Badiev M.K., “Phase transitions in the antiferromagnetic Ising model on a square lattice with next-nearest-neighbor interactions”, J. Exp. Theor. Phys., 117:6 (2013), 1091–1096 | DOI
[11] Binder K., Wang J-Sh., “Finite-size effects at critical points with anisotropic correlations: Phenomenological scaling theory and Monte Carlo simulations”, J. Stat. Phys., 55:1-2 (1989), 87–126 | DOI
[12] Peczak P., Ferrenberg A.M., Landau D.P., “High-accuracy Monte Carlo study of the three-dimensional classical Heisenberg ferromagnet”, Phys. Rev. B., 43:7 (1991), 6087–6093 | DOI
[13] Le Guillou J.C., Zinn-Justin J., “Critical exponents from field theory”, Phys. Rev. B., 21:9 (1980), 3976–3998 | DOI | Zbl
[14] Diep H.T., Lallemand P., Nagai O., “Critical properties of a simple cubic fully frustrated Ising lattice by Monte Carlo method”, J. Phys. C: Solid State Phys., 18:5 (1985), 1067–1078 | DOI
[15] Bernardi L.W., Hukushima K., Takayama H., “Fully frustrated Ising system on a 3D simple cubic lattice: revisited”, J. Phys. A: Math. Gen., 32:10 (1999), 1787–1800 | DOI | Zbl