Computer simulation of critical properties of the frustrated Ising model
Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 26-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the replica algorithm by the Monte Carlo method, a computer simulation of the three-dimensional antiferromagnetic Ising model is performed, taking into account the interactions of the first and second nearest neighbors. The critical properties of this model are studied. The investigations were carried out for the ratios of the exchange interactions of the first and second nearest neighbors $r=J_2/J_1$ in the range $0.0 \leq r \leq 1.0$. In the framework of the theory of finite-dimensional scaling, all the main static critical exponents are calculated.
Keywords: Monte Carlo method, replica algorithm, critical exponents.
@article{DEMR_2018_9_a3,
     author = {M. K. Ramazanov and A. K. Murtazaev},
     title = {Computer simulation of critical properties of the frustrated {Ising} model},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {26--32},
     publisher = {mathdoc},
     volume = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2018_9_a3/}
}
TY  - JOUR
AU  - M. K. Ramazanov
AU  - A. K. Murtazaev
TI  - Computer simulation of critical properties of the frustrated Ising model
JO  - Daghestan Electronic Mathematical Reports
PY  - 2018
SP  - 26
EP  - 32
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2018_9_a3/
LA  - ru
ID  - DEMR_2018_9_a3
ER  - 
%0 Journal Article
%A M. K. Ramazanov
%A A. K. Murtazaev
%T Computer simulation of critical properties of the frustrated Ising model
%J Daghestan Electronic Mathematical Reports
%D 2018
%P 26-32
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2018_9_a3/
%G ru
%F DEMR_2018_9_a3
M. K. Ramazanov; A. K. Murtazaev. Computer simulation of critical properties of the frustrated Ising model. Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 26-32. http://geodesic.mathdoc.fr/item/DEMR_2018_9_a3/

[1] Dotsenko V.S., “Critical phenomena and quenched disorder”, Phys. Usp., 38:5 (1995), 457–496 | DOI

[2] Korshunov S.E., “Phase transitions in two-dimensional systems with continuous degeneracy”, Phys. Usp., 49:3 (2006), 225–262 | DOI

[3] Ramazanov M.K., Murtazaev A.K., “Phase transitions and critical characteristics in the layered antiferromagnetic Ising model with next-nearest-neighbor intralayer interactions”, JETP Lett., 101:10 (2015), 714–718 | DOI

[4] Murtazaev A.K., Ramazanov M.K., Badiev M.K., “Critical properties of an antiferromagnetic Ising model ob a square lattice with interactions of the next-to-nearest neighbors”, Low Temp. Phys., 37:12 (2011), 1001–1005 | DOI

[5] Kassan-Ogly F.A., Filippov B.N., Murtazaev A.K., Ramazanov M.K., Badiev M.K., “Influence of field ob frustrations in low-dimensional magnets”, J. Magn. Magm. Mater., 324:21 (2012), 3418–3421 | DOI

[6] Murtazaev A.K., Ramazanov M.K., Badiev M.K., “Phase transitions and critical properties of the frustrated Heisenberg model on a layer triangular lattice with next-to-nearest-neighbor interactions”, J. Exp. Theor. Phys., 115:2 (2012), 303–308 | DOI

[7] Murtazaev A.K., Ramazanov M.K., Badiev M.K., “Critical properties of the two-dimensional Ising model on a square lattice with competing interactions”, Phys. B: Cond. Matt., 476 (2015), 1–5 | DOI

[8] Kassan-Ogly F.A., Murtazaev A.K., Zhuravlev A.K., Ramazanov M.K., Proshkin A.I., “Ising model on a square lattice with second-neighbor and third-neighbor interactions”, J. Magn. Magn. Mater., 384 (2015), 247–254 | DOI

[9] Mitsutake A., Sugita Y., Okamoto Y., “Generalized-Ensemble Algorithms for Molecular Simulations of Biopolymers”, Biopolymers (Peptide Science), 60:2 (2001), 96–123 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[10] Murtazaev A.K., Ramazanov M.K., Kassan-Ogly F.A., Badiev M.K., “Phase transitions in the antiferromagnetic Ising model on a square lattice with next-nearest-neighbor interactions”, J. Exp. Theor. Phys., 117:6 (2013), 1091–1096 | DOI

[11] Binder K., Wang J-Sh., “Finite-size effects at critical points with anisotropic correlations: Phenomenological scaling theory and Monte Carlo simulations”, J. Stat. Phys., 55:1-2 (1989), 87–126 | DOI

[12] Peczak P., Ferrenberg A.M., Landau D.P., “High-accuracy Monte Carlo study of the three-dimensional classical Heisenberg ferromagnet”, Phys. Rev. B., 43:7 (1991), 6087–6093 | DOI

[13] Le Guillou J.C., Zinn-Justin J., “Critical exponents from field theory”, Phys. Rev. B., 21:9 (1980), 3976–3998 | DOI | Zbl

[14] Diep H.T., Lallemand P., Nagai O., “Critical properties of a simple cubic fully frustrated Ising lattice by Monte Carlo method”, J. Phys. C: Solid State Phys., 18:5 (1985), 1067–1078 | DOI

[15] Bernardi L.W., Hukushima K., Takayama H., “Fully frustrated Ising system on a 3D simple cubic lattice: revisited”, J. Phys. A: Math. Gen., 32:10 (1999), 1787–1800 | DOI | Zbl