Computer simulation of critical properties of the frustrated Ising model
Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 26-32

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the replica algorithm by the Monte Carlo method, a computer simulation of the three-dimensional antiferromagnetic Ising model is performed, taking into account the interactions of the first and second nearest neighbors. The critical properties of this model are studied. The investigations were carried out for the ratios of the exchange interactions of the first and second nearest neighbors $r=J_2/J_1$ in the range $0.0 \leq r \leq 1.0$. In the framework of the theory of finite-dimensional scaling, all the main static critical exponents are calculated.
Keywords: Monte Carlo method, replica algorithm, critical exponents.
@article{DEMR_2018_9_a3,
     author = {M. K. Ramazanov and A. K. Murtazaev},
     title = {Computer simulation of critical properties of the frustrated {Ising} model},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {26--32},
     publisher = {mathdoc},
     volume = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2018_9_a3/}
}
TY  - JOUR
AU  - M. K. Ramazanov
AU  - A. K. Murtazaev
TI  - Computer simulation of critical properties of the frustrated Ising model
JO  - Daghestan Electronic Mathematical Reports
PY  - 2018
SP  - 26
EP  - 32
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2018_9_a3/
LA  - ru
ID  - DEMR_2018_9_a3
ER  - 
%0 Journal Article
%A M. K. Ramazanov
%A A. K. Murtazaev
%T Computer simulation of critical properties of the frustrated Ising model
%J Daghestan Electronic Mathematical Reports
%D 2018
%P 26-32
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2018_9_a3/
%G ru
%F DEMR_2018_9_a3
M. K. Ramazanov; A. K. Murtazaev. Computer simulation of critical properties of the frustrated Ising model. Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 26-32. http://geodesic.mathdoc.fr/item/DEMR_2018_9_a3/