Research of the Potts model with $q=3$ on a triangular lattice by the Wang-Landau algorithm
Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 15-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $q = 3$ Potts model on the triangular lattice with first and second nearest neighbors interaction investigated by the Wang-Landau algorithm of Monte Carlo method. The Density of States of the system and temperature dependence of entropy $S$ are calculated. It is shown that, depending on the ratio of the interactions between the first and second nearest neighbors, the ground state can be both highly degenerate, indicating a frustration in the system, and weakly degenerate. The presence of phase transitions in the system of the first and second order. The phase transition from antiferromagnetic and collinear phases to paramagnetic phase are a phase transition of the first order, whereas the transition from frustrated phase to paramagnetic is a phase transition of the second order. The critical temperature of the phase transitions calculated and phase diagram of the system are determined.
Keywords: Potts model, density of states, triangular lattice, entropy, frustration, phase transition, Monte Carlo method, Wang-Landau algorithm.
@article{DEMR_2018_9_a2,
     author = {M. A. Magomedov and A. K. Murtazaev and L. K. Magomedova and M. M. Isaeva},
     title = {Research of the {Potts} model with $q=3$ on a triangular lattice by the {Wang-Landau} algorithm},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {15--25},
     publisher = {mathdoc},
     volume = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2018_9_a2/}
}
TY  - JOUR
AU  - M. A. Magomedov
AU  - A. K. Murtazaev
AU  - L. K. Magomedova
AU  - M. M. Isaeva
TI  - Research of the Potts model with $q=3$ on a triangular lattice by the Wang-Landau algorithm
JO  - Daghestan Electronic Mathematical Reports
PY  - 2018
SP  - 15
EP  - 25
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2018_9_a2/
LA  - ru
ID  - DEMR_2018_9_a2
ER  - 
%0 Journal Article
%A M. A. Magomedov
%A A. K. Murtazaev
%A L. K. Magomedova
%A M. M. Isaeva
%T Research of the Potts model with $q=3$ on a triangular lattice by the Wang-Landau algorithm
%J Daghestan Electronic Mathematical Reports
%D 2018
%P 15-25
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2018_9_a2/
%G ru
%F DEMR_2018_9_a2
M. A. Magomedov; A. K. Murtazaev; L. K. Magomedova; M. M. Isaeva. Research of the Potts model with $q=3$ on a triangular lattice by the Wang-Landau algorithm. Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 15-25. http://geodesic.mathdoc.fr/item/DEMR_2018_9_a2/

[1] Korner M., Troyer M., Computer Simulation Studies in Condensed-Matter Physics XVII, Springer Proceedings in Physics, 103, eds. D. Landau, S. Lewis, H.-B. Schutler, Springer, Berlin–Heidelberg, 2006, 142

[2] Landau D.P., Binder K., Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge, 2000 | Zbl

[3] Nakano A., Bachlechner M.E., Kalia R.K. et al., “Multiscale Simulation of Nanosystems”, Computing in Science and Engg., 3:4 (2001), 56–66 | DOI

[4] Murtazaev A.K., Kamilov I.K., Magomedov M.A., “Klasternye algoritmy metoda Monte-Karlo, konechno-razmernyi skeiling i kriticheskie indeksy slozhnykh reshetochnykh modelei”, ZhETF, 120:6 (2001), 1535–1543

[5] Shannon R.D., “Revised effective ionic radii systematic if interatomic distances in halides and chalcogenides”, Acta Cryst., A32:5 (1976), 751–767 | DOI

[6] Li J., Sleight A.W., “Structure of $\beta$-AgAlO2and structural systematics of tetrahedral MM’X2compounds”, J. Solid State Chem., 177:3 (2004), 889–894 | DOI

[7] Prewitt C.T., Shannon R.D., Rogers D.B., “Chemistry of noble metal oxides. II. Crystal structures of PtCoO2, PdCoO2, CuFeO2 and AgFeO2”, Inorg. Chem., 10:4 (1971), 719–723 | DOI

[8] Hirakawa K., Kadowaki H., Ubukoch K., “Experimental studies of triangular lattice antiferromagnets with $S = 1 / 2$: NaTiO2and LiNiO2”, J. Phys. Soc. Japan., 54:9 (1985), 3526–3536 | DOI

[9] Wang X., Loa I., Kunc L. et al., “Effect of pressure on the structural properties and Raman modes of LiCoO2”, Phys. Rev. B, 72:22 (2005), 1–8

[10] Townsend M.G., Longworth G., Roudaut E., “Triangular-spin, kagome plane in jarosites”, Physical Review V, 33 (1986), 4919–4926 | DOI

[11] Murtazaev A.K., Babaev A.B., Magomedov M.A., and t.c., “Three-state Potts model on triangular lattice with nearest-neighbor and next-nearest-neighbor antiferromagnetic interactions”, Solid State Communications, 246 (2016), 41–46 | DOI

[12] Babaev A.B., Magomedov M.A., Murtazaev A.K., i dr., “Fazovye perekhody v dvumernoi antiferromagnitnoi modeli Pottsa na treugolnoi reshetke s uchetom vzaimodeistvii vtorykh blizhaishikh sosedei”, ZhETF, 149:2 (2016), 357–366

[13] Chiaki Y., Yutaka O., “Three-dimensional antiferromagnetic $q$-state Potts models: application of the Wang-Landau algorithm”, Journal of Physics A: Mathematical and General, 34 (2001), 8781 | DOI | Zbl

[14] Landau D.P., Tsai S.-H., Exler M., “A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling”, Am. J. Phys., 72 (2004), 1294 | DOI

[15] Landau D.P., Wang F., Tsai S.-H., “Critical endpoint behavior: A Wang-Landau study”, Comp. Phys. Comm., 179 (2008), 8 | DOI | Zbl

[16] Ramazanov M.K., Murtazaev A.K., Magomedov M.A., “Thermodynamic, critical properties and phase transitions of the Ising model on a square lattice with competing interactions”, Solid State Communications, 233 (2016), 35–40 | DOI

[17] Magomedov M.A., Murtazaev A.K., Magomedova L.K., “Plotnost sostoyaniya i entropiya modeli Izinga na geksagonalnoi reshetke s uchetom vzaimodeistviya vtorykh blizhaishikh sosedei”, Vestnik DGU, 31:1 (2016), 43–50

[18] Zhou C., Bhatt R.N., “Understanding and improving the Wang-Landau algorithm”, Physical Review E, 72:2 (2005)