Algorithm for numerical realization of polynomials in functions orthogonal in the sense of Sobolev and generated by cosines
Daghestan Electronic Mathematical Reports, no. 9 (2018), pp. 1-6
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we developed an algorithm for numerical computation of polynomials by the functions $\xi_{1,0}(t)=1,\ \xi_{1,1}(t)=t,\ \xi_{1,n+1}(t)=\frac{\sqrt{2}}{\pi n}\sin(\pi nt),\ (n=1,2,\ldots)$ on the grid $\{t_j=\frac{j}{N}\}_{j=0}^{N-1}$. These functions are orthogonal on Sobolev with respect to the inner product $\langle f, g\rangle=f(0)g(0)+\int_0^1f'(t)g'(t)dt$ and generated by functions $\xi_0(x)=1,\ \{\xi_n(t)=\sqrt{2}\cos(\pi nt)\}_{n=1}^\infty$. The algorithm is based on the fast Fourier transform.
Mots-clés :
fast Fourier transform
Keywords: discrete sine transform, inner product of Sobolev type, Sobolev orthogonal function.
Keywords: discrete sine transform, inner product of Sobolev type, Sobolev orthogonal function.
@article{DEMR_2018_9_a0,
author = {G. G. Akniev and R. M. Gadzhimirzaev},
title = {Algorithm for numerical realization of polynomials in functions orthogonal in the sense of {Sobolev} and generated by cosines},
journal = {Daghestan Electronic Mathematical Reports},
pages = {1--6},
year = {2018},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DEMR_2018_9_a0/}
}
TY - JOUR AU - G. G. Akniev AU - R. M. Gadzhimirzaev TI - Algorithm for numerical realization of polynomials in functions orthogonal in the sense of Sobolev and generated by cosines JO - Daghestan Electronic Mathematical Reports PY - 2018 SP - 1 EP - 6 IS - 9 UR - http://geodesic.mathdoc.fr/item/DEMR_2018_9_a0/ LA - ru ID - DEMR_2018_9_a0 ER -
%0 Journal Article %A G. G. Akniev %A R. M. Gadzhimirzaev %T Algorithm for numerical realization of polynomials in functions orthogonal in the sense of Sobolev and generated by cosines %J Daghestan Electronic Mathematical Reports %D 2018 %P 1-6 %N 9 %U http://geodesic.mathdoc.fr/item/DEMR_2018_9_a0/ %G ru %F DEMR_2018_9_a0
G. G. Akniev; R. M. Gadzhimirzaev. Algorithm for numerical realization of polynomials in functions orthogonal in the sense of Sobolev and generated by cosines. Daghestan Electronic Mathematical Reports, no. 9 (2018), pp. 1-6. http://geodesic.mathdoc.fr/item/DEMR_2018_9_a0/
[1] Sharapudinov I.I., Magomed-Kasumov M.G., “Chislennyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi sistemoi kosinusov”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 53–60
[2] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, New York, 2007, 1262 pp. | Zbl