Algorithm for numerical realization of polynomials in functions orthogonal in the sense of Sobolev and generated by cosines
Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 1-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we developed an algorithm for numerical computation of polynomials by the functions $\xi_{1,0}(t)=1,\ \xi_{1,1}(t)=t,\ \xi_{1,n+1}(t)=\frac{\sqrt{2}}{\pi n}\sin(\pi nt),\ (n=1,2,\ldots)$ on the grid $\{t_j=\frac{j}{N}\}_{j=0}^{N-1}$. These functions are orthogonal on Sobolev with respect to the inner product $\langle f, g\rangle=f(0)g(0)+\int_0^1f'(t)g'(t)dt$ and generated by functions $\xi_0(x)=1,\ \{\xi_n(t)=\sqrt{2}\cos(\pi nt)\}_{n=1}^\infty$. The algorithm is based on the fast Fourier transform.
Keywords: fast Fourier transform, discrete sine transform, inner product of Sobolev type, Sobolev orthogonal function.
@article{DEMR_2018_9_a0,
     author = {G. G. Akniev and R. M. Gadzhimirzaev},
     title = {Algorithm for numerical realization of polynomials in functions orthogonal in the sense of {Sobolev} and generated by cosines},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2018_9_a0/}
}
TY  - JOUR
AU  - G. G. Akniev
AU  - R. M. Gadzhimirzaev
TI  - Algorithm for numerical realization of polynomials in functions orthogonal in the sense of Sobolev and generated by cosines
JO  - Daghestan Electronic Mathematical Reports
PY  - 2018
SP  - 1
EP  - 6
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2018_9_a0/
LA  - ru
ID  - DEMR_2018_9_a0
ER  - 
%0 Journal Article
%A G. G. Akniev
%A R. M. Gadzhimirzaev
%T Algorithm for numerical realization of polynomials in functions orthogonal in the sense of Sobolev and generated by cosines
%J Daghestan Electronic Mathematical Reports
%D 2018
%P 1-6
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2018_9_a0/
%G ru
%F DEMR_2018_9_a0
G. G. Akniev; R. M. Gadzhimirzaev. Algorithm for numerical realization of polynomials in functions orthogonal in the sense of Sobolev and generated by cosines. Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 1-6. http://geodesic.mathdoc.fr/item/DEMR_2018_9_a0/

[1] Sharapudinov I.I., Magomed-Kasumov M.G., “Chislennyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi sistemoi kosinusov”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 53–60

[2] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, New York, 2007, 1262 pp. | Zbl