Sobolev orthogonal polynomials generated by modified Laguerre polynomials and the Cauchy problem for ODE systems
Daghestan Electronic Mathematical Reports, Tome 10 (2018), pp. 23-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of representing a solution of the Cauchy problem for a system of ordinary differential equations (in general, nonlinear) in the form of a Fourier series in polynomials $ l_{r, k} (x; b) $ $(k = 0,1,\ldots) $, orthonormal by Sobolev with respect to the scalar product $$ with $ b> 0 $, generated by the modified Laguerre polynomials $ l_k (x; b) = \sqrt {b} L_k (bx) $ by means of the equalities $ l_ {r, k} (x; b) = \frac {x ^ k} {k!} \, (k = 0,1 , \ldots, r-1) $,   $ l_ {r, r + k} (x; b) = \frac {1} {(r-1)!} \int_ {0} ^ x (xt) ^ {r-1} {l} _ {k} (t; b) dt \, (k = 0,1, \ldots) $. In the infinite-dimensional Hilbert space of $ l_2 ^ m $ $ m $ -dimensional sequences $ C = (c_0, c_1, \ldots) $ for which the norm $ \| C \| = \left (\sum \nolimits_ {j = 0} ^ \infty \sum \nolimits_ {l = 1} ^ {m} (c_j ^ l) ^ 2 \right) ^ \frac12 $, the contracting nonlinear operator $ A: l_2 ^ m \to l_2 ^ m $ is constructed, the fixed point \linebreak $ \hat C = (\hat c_0, \hat c_1, \ldots) $ coincides with the sequence of unknown coefficients of the expansion of the solution of the Cauchy problem in question Fourier series in the system $ l_ {1, k} (x; b) $ $ (k = 0,1, \ldots) $. The corresponding finite-dimensional analogue $ A_N: \mathbb {R} ^ N_m \to \mathbb {R} ^ N_m $ of the operator $ A $ is also constructed, which acts in the finite-dimensional space $ \mathbb {R} ^ N_m $ of matrices $ C $ of dimension $ m \times N $, in which the norm $ \| C \| _N ^ m = \left (\sum \nolimits_ {j = 0} ^ {N-1} \sum \nolimits_ {l = 1} ^ {m} (c_j ^ l) ^ 2 \right ) ^ \frac12 $. The fixed point $ \bar C = (\bar c_0, \bar c_1, \ldots, \bar c_ {N-1}) $ of the operator $ A_N $ is the estimate (approximate value) of the desired point $ \hat C_N = (\hat c_0, \hat c_1, \ldots, \hat c_ {N-1}) $. An estimate of the error $ \| \hat C_N- \bar C_N \| _N ^ m $ is established.
Keywords: Polynomials orthogonal on Sobolev, generated Laguerre\linebreak polynomials, modified Laguerre polynomials, Cauchy problem for ODE systems.
@article{DEMR_2018_10_a2,
     author = {I. I. Sharapudinov and T. I. Sharapudinov},
     title = {Sobolev orthogonal polynomials generated by modified {Laguerre} polynomials and the {Cauchy} problem for {ODE} systems},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {23--40},
     publisher = {mathdoc},
     volume = {10},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2018_10_a2/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - T. I. Sharapudinov
TI  - Sobolev orthogonal polynomials generated by modified Laguerre polynomials and the Cauchy problem for ODE systems
JO  - Daghestan Electronic Mathematical Reports
PY  - 2018
SP  - 23
EP  - 40
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2018_10_a2/
LA  - ru
ID  - DEMR_2018_10_a2
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A T. I. Sharapudinov
%T Sobolev orthogonal polynomials generated by modified Laguerre polynomials and the Cauchy problem for ODE systems
%J Daghestan Electronic Mathematical Reports
%D 2018
%P 23-40
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2018_10_a2/
%G ru
%F DEMR_2018_10_a2
I. I. Sharapudinov; T. I. Sharapudinov. Sobolev orthogonal polynomials generated by modified Laguerre polynomials and the Cauchy problem for ODE systems. Daghestan Electronic Mathematical Reports, Tome 10 (2018), pp. 23-40. http://geodesic.mathdoc.fr/item/DEMR_2018_10_a2/

[1] Althammer P., “Eine Erweiterung des Orthogonalitatsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation”, J. Reine Angew. Math., 211 (1962), 192–204 | Zbl

[2] Iserles A., Koch P.E., Norsett S.P. and Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65 (1991), 151–175 | DOI | Zbl

[3] Meijer H.G., “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73 (1993), 1–16 | DOI | Zbl

[4] Marcellan F., Alfaro M. and Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48 (1993), 113–131 | DOI | Zbl

[5] Lopez G. Marcellan F. Vanassche W., “Relative Asymptotic for Polynomials Orthogonal with Respect to a Discrete Sobolev Inner-Product”, Constr. Approx., 1:1 (1995), 107–137 | DOI | Zbl

[6] Kwon K.H. and Littlejohn L.L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 2 (1995), 289–303 | Zbl

[7] Kwon K.H. and Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28 (1998), 547–594 | DOI | Zbl

[8] Marcellan F. and Yuan Xu, “On sobolev orthogonal polynomials”, 2014, 1–40, arXiv: 6249v1 [math.C.A]

[9] Sharapudinov I.I., Smeshannye ryady po ortogonalnym polinomam, Izdatelstvo Dagestanskogo nauchnogo tsentra, 2004

[10] Sharapudinov I.I., Sharapudinov T.I., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Chebysheva, ortogonalnymi na setke”, Izv. vuzov. Matem., 8 (2017), 67–79 | Zbl

[11] Sharapudinov I.I., “Spetsialnye ryady po polinomam Lagerra i ikh approksimativnye svoistva”, Sib. matem. zhurn., 58:2 (2017), 440–467 | Zbl

[12] Sharapudinov I.I., Magomed-Kasumov M.G., “O predstavlenii resheniya zadachi Koshi ryadom Fure po polinomam, ortogonalnym po Sobolevu, porozhdennym mnogochlenami Lagerra”, Differentsialnye uravneniya, 54:1 (2018), 51–68 | Zbl

[13] Sharapudinov I.I., “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. matem., 82:1 (2018), 225–258 | Zbl

[14] Trefethen L.N., Spectral methods in Matlab, SIAM, Philadelphia, 2000 | Zbl

[15] Trefethen L.N., Finite difference and spectral methods for ordinary and partial differential equation, Cornell University, 1996

[16] Solodovnikov V.V., Dmitriev A.N., Egupov N.D., Spektralnye metody rascheta i proektirovaniya sistem upravleniya, Mashinostroenie, Moskva, 1986

[17] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, Moskva, 1962

[18] Askey R., Wainger S., “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Mathem., 87 (1965), 698–708