Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2018_10_a2, author = {I. I. Sharapudinov and T. I. Sharapudinov}, title = {Sobolev orthogonal polynomials generated by modified {Laguerre} polynomials and the {Cauchy} problem for {ODE} systems}, journal = {Daghestan Electronic Mathematical Reports}, pages = {23--40}, publisher = {mathdoc}, volume = {10}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2018_10_a2/} }
TY - JOUR AU - I. I. Sharapudinov AU - T. I. Sharapudinov TI - Sobolev orthogonal polynomials generated by modified Laguerre polynomials and the Cauchy problem for ODE systems JO - Daghestan Electronic Mathematical Reports PY - 2018 SP - 23 EP - 40 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2018_10_a2/ LA - ru ID - DEMR_2018_10_a2 ER -
%0 Journal Article %A I. I. Sharapudinov %A T. I. Sharapudinov %T Sobolev orthogonal polynomials generated by modified Laguerre polynomials and the Cauchy problem for ODE systems %J Daghestan Electronic Mathematical Reports %D 2018 %P 23-40 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2018_10_a2/ %G ru %F DEMR_2018_10_a2
I. I. Sharapudinov; T. I. Sharapudinov. Sobolev orthogonal polynomials generated by modified Laguerre polynomials and the Cauchy problem for ODE systems. Daghestan Electronic Mathematical Reports, Tome 10 (2018), pp. 23-40. http://geodesic.mathdoc.fr/item/DEMR_2018_10_a2/
[1] Althammer P., “Eine Erweiterung des Orthogonalitatsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation”, J. Reine Angew. Math., 211 (1962), 192–204 | Zbl
[2] Iserles A., Koch P.E., Norsett S.P. and Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65 (1991), 151–175 | DOI | Zbl
[3] Meijer H.G., “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73 (1993), 1–16 | DOI | Zbl
[4] Marcellan F., Alfaro M. and Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48 (1993), 113–131 | DOI | Zbl
[5] Lopez G. Marcellan F. Vanassche W., “Relative Asymptotic for Polynomials Orthogonal with Respect to a Discrete Sobolev Inner-Product”, Constr. Approx., 1:1 (1995), 107–137 | DOI | Zbl
[6] Kwon K.H. and Littlejohn L.L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 2 (1995), 289–303 | Zbl
[7] Kwon K.H. and Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28 (1998), 547–594 | DOI | Zbl
[8] Marcellan F. and Yuan Xu, “On sobolev orthogonal polynomials”, 2014, 1–40, arXiv: 6249v1 [math.C.A]
[9] Sharapudinov I.I., Smeshannye ryady po ortogonalnym polinomam, Izdatelstvo Dagestanskogo nauchnogo tsentra, 2004
[10] Sharapudinov I.I., Sharapudinov T.I., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Chebysheva, ortogonalnymi na setke”, Izv. vuzov. Matem., 8 (2017), 67–79 | Zbl
[11] Sharapudinov I.I., “Spetsialnye ryady po polinomam Lagerra i ikh approksimativnye svoistva”, Sib. matem. zhurn., 58:2 (2017), 440–467 | Zbl
[12] Sharapudinov I.I., Magomed-Kasumov M.G., “O predstavlenii resheniya zadachi Koshi ryadom Fure po polinomam, ortogonalnym po Sobolevu, porozhdennym mnogochlenami Lagerra”, Differentsialnye uravneniya, 54:1 (2018), 51–68 | Zbl
[13] Sharapudinov I.I., “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. matem., 82:1 (2018), 225–258 | Zbl
[14] Trefethen L.N., Spectral methods in Matlab, SIAM, Philadelphia, 2000 | Zbl
[15] Trefethen L.N., Finite difference and spectral methods for ordinary and partial differential equation, Cornell University, 1996
[16] Solodovnikov V.V., Dmitriev A.N., Egupov N.D., Spektralnye metody rascheta i proektirovaniya sistem upravleniya, Mashinostroenie, Moskva, 1986
[17] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, Moskva, 1962
[18] Askey R., Wainger S., “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Mathem., 87 (1965), 698–708