Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2018_10_a1, author = {A.-R. K. Ramazanov and V. G. Magomedova}, title = {Co-convex interpolation by rational spline functions over a uniform grid of nodes}, journal = {Daghestan Electronic Mathematical Reports}, pages = {13--22}, publisher = {mathdoc}, volume = {10}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2018_10_a1/} }
TY - JOUR AU - A.-R. K. Ramazanov AU - V. G. Magomedova TI - Co-convex interpolation by rational spline functions over a uniform grid of nodes JO - Daghestan Electronic Mathematical Reports PY - 2018 SP - 13 EP - 22 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2018_10_a1/ LA - ru ID - DEMR_2018_10_a1 ER -
%0 Journal Article %A A.-R. K. Ramazanov %A V. G. Magomedova %T Co-convex interpolation by rational spline functions over a uniform grid of nodes %J Daghestan Electronic Mathematical Reports %D 2018 %P 13-22 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2018_10_a1/ %G ru %F DEMR_2018_10_a1
A.-R. K. Ramazanov; V. G. Magomedova. Co-convex interpolation by rational spline functions over a uniform grid of nodes. Daghestan Electronic Mathematical Reports, Tome 10 (2018), pp. 13-22. http://geodesic.mathdoc.fr/item/DEMR_2018_10_a1/
[1] Schweikert D.G., “An interpolation curve using a spline in tension”, J. Math. Phys., 45 (1966), 312–317 | DOI | Zbl
[2] Miroshnichenko V.L., “Convex and monotone spline interpolation”, Constructive Theory of Function, Proc. Int. Conf., Publ. House of Bulgarian Acad. Sci., Sofia, 1984, 610–620
[3] Miroshnichenko V.L., “Dostatochnye usloviya monotonnosti i vypuklosti dlya interpolyatsionnykh kubicheskikh splainov klassa $C^2$”, sb. st. IM SO AN SSSR, Vychislitelnye sistemy, 137, 1990, 31–57
[4] Kvasov B.I., Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006, 360 pp.
[5] Volkov Yu.S., Bogdanov V.V., Miroshnichenko V.L., Shevaldin V.T., “Formosokhranyayuschaya interpolyatsiya kubicheskimi splainami”, Matem. zametki, 88:6 (2010), 836–844. | DOI | Zbl
[6] Volkov Yu.S., Shevaldin V.T., “Usloviya formosokhraneniya pri interpolyatsii splainami vtoroi stepeni po Subbotinu i po Marsdenu”, Tr. In–ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 145–152
[7] Bogdanov V.V., Volkov Yu.S., “Ob usloviyakh formosokhraneniya pri interpolyatsii parabolicheskimi splainami po Subbotinu”, Tr. In–ta matematiki i mekhaniki UrO RAN, 22, no. 4, 2016, 102–113 | DOI
[8] Schaback R., “Spezielle rationale Splinefunktionen”, J. Approx Theory, 7:2 (1973), 281–292 | DOI | Zbl
[9] Hussain M.Z., Sarfraz M., Shaikh T.S., “Shape preserving rational cubic spline for positive and convex data”, Egyptian Informatics Journal, 12 (2011), 231–236 | DOI
[10] Edeo A., Gofeb G., Tefera T., “Shape preserving $C^2$ rational cubic spline interpolation”, American Scientific Research Journal for Engineering, Technology and Sciences, 12:1 (2015), 110–122
[11] Ramazanov A.-R.K., Magomedova V.G., “Bezuslovno skhodyaschiesya interpolyatsionnye ratsionalnye splainy”, Matem. zametki, 103:4 (2018), 588–599
[12] Ramazanov A.-R.K., Magomedova V.G., “Otsenki skorosti skhodimosti splainov po trekhtochechnym ratsionalnym interpolyantam dlya nepreryvnykh i nepreryvno differentsiruemykh funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23, no. 3, 2017, 224–233
[13] Ramazanov A.-R.K., Magomedova V.G., “Splainy po trekhtochechnym ratsionalnym interpolyantam”, Tr. Matem. tsentra im. N.I. Lobachevskogo, 54, Kazan, 2017, 304–306
[14] Ramazanov A.-R.K., Magomedova V.G., “Splainy po trekhtochechnym ratsionalnym interpolyantam s avtonomnymi polyusami”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 16–28
[15] Ramazanov A.-R.K., Magomedova V.G., “Kovypuklaya interpolyatsiya splainami po trekhtochechnym ratsionalnym interpolyantam”, Tr. In–ta matematiki i mekhaniki UrO RAN, 24, no. 3, 2018, 1–12