Co-convex interpolation by rational spline functions over a uniform grid of nodes
Daghestan Electronic Mathematical Reports, Tome 10 (2018), pp. 13-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

To solve an interpolation problem with the conditions of preserving the convexity and co-convexity of discrete functions $f(x)$ defined on uniform grids of nodes $\Delta: a=x_0$ $(N\geqslant 3)$ rational spline-functions $R_{N,1}(x)$ are applied. Here $R_{N,1}(x)=R_{N,1} (x, f, \Delta, g(t))= (R_i(x)(x-x_{i-1})+R_{i-1}(x)(x_i-x))/(x_i-x_{i-1})$ with $x\in [x_{i-1},x_i]$ $(i=1,2,\dots,N)$, $R_i(x)=\alpha_i+\beta_i(x-x_i)+\gamma_i/(x-g_i(t))$ $(i=1,2,\dots,N-1)$ and $R_i(x_j)=f(x_j)$ $(j=i-1,i,i+1)$, the parameter $t$ locate a position of the pole $g_i(t)$ with respect to the points $x_{i-1}$ and $x_i$. We take $R_0(x)\equiv R_1(x)$, $R_N(x)\equiv R_{N-1}(x)$. For such splines we obtain co-convex preserving conditions $0,5$ or $-3,20...$ with $q_i=f(x_{i-2}, x_{i-1}, x_i)/f(x_{i-1},x_i, x_{i+1})$ for all corresponding intervals $(x_{i-1},x_i)$, hence for the segment $[a,b]$.
Keywords: interpolation spline, rational spline, co-convex interpolation, shape preserving interpolation.
@article{DEMR_2018_10_a1,
     author = {A.-R. K. Ramazanov and V. G. Magomedova},
     title = {Co-convex interpolation by rational spline functions over a uniform grid of nodes},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {13--22},
     publisher = {mathdoc},
     volume = {10},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2018_10_a1/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - V. G. Magomedova
TI  - Co-convex interpolation by rational spline functions over a uniform grid of nodes
JO  - Daghestan Electronic Mathematical Reports
PY  - 2018
SP  - 13
EP  - 22
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2018_10_a1/
LA  - ru
ID  - DEMR_2018_10_a1
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A V. G. Magomedova
%T Co-convex interpolation by rational spline functions over a uniform grid of nodes
%J Daghestan Electronic Mathematical Reports
%D 2018
%P 13-22
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2018_10_a1/
%G ru
%F DEMR_2018_10_a1
A.-R. K. Ramazanov; V. G. Magomedova. Co-convex interpolation by rational spline functions over a uniform grid of nodes. Daghestan Electronic Mathematical Reports, Tome 10 (2018), pp. 13-22. http://geodesic.mathdoc.fr/item/DEMR_2018_10_a1/

[1] Schweikert D.G., “An interpolation curve using a spline in tension”, J. Math. Phys., 45 (1966), 312–317 | DOI | Zbl

[2] Miroshnichenko V.L., “Convex and monotone spline interpolation”, Constructive Theory of Function, Proc. Int. Conf., Publ. House of Bulgarian Acad. Sci., Sofia, 1984, 610–620

[3] Miroshnichenko V.L., “Dostatochnye usloviya monotonnosti i vypuklosti dlya interpolyatsionnykh kubicheskikh splainov klassa $C^2$”, sb. st. IM SO AN SSSR, Vychislitelnye sistemy, 137, 1990, 31–57

[4] Kvasov B.I., Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006, 360 pp.

[5] Volkov Yu.S., Bogdanov V.V., Miroshnichenko V.L., Shevaldin V.T., “Formosokhranyayuschaya interpolyatsiya kubicheskimi splainami”, Matem. zametki, 88:6 (2010), 836–844. | DOI | Zbl

[6] Volkov Yu.S., Shevaldin V.T., “Usloviya formosokhraneniya pri interpolyatsii splainami vtoroi stepeni po Subbotinu i po Marsdenu”, Tr. In–ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 145–152

[7] Bogdanov V.V., Volkov Yu.S., “Ob usloviyakh formosokhraneniya pri interpolyatsii parabolicheskimi splainami po Subbotinu”, Tr. In–ta matematiki i mekhaniki UrO RAN, 22, no. 4, 2016, 102–113 | DOI

[8] Schaback R., “Spezielle rationale Splinefunktionen”, J. Approx Theory, 7:2 (1973), 281–292 | DOI | Zbl

[9] Hussain M.Z., Sarfraz M., Shaikh T.S., “Shape preserving rational cubic spline for positive and convex data”, Egyptian Informatics Journal, 12 (2011), 231–236 | DOI

[10] Edeo A., Gofeb G., Tefera T., “Shape preserving $C^2$ rational cubic spline interpolation”, American Scientific Research Journal for Engineering, Technology and Sciences, 12:1 (2015), 110–122

[11] Ramazanov A.-R.K., Magomedova V.G., “Bezuslovno skhodyaschiesya interpolyatsionnye ratsionalnye splainy”, Matem. zametki, 103:4 (2018), 588–599

[12] Ramazanov A.-R.K., Magomedova V.G., “Otsenki skorosti skhodimosti splainov po trekhtochechnym ratsionalnym interpolyantam dlya nepreryvnykh i nepreryvno differentsiruemykh funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23, no. 3, 2017, 224–233

[13] Ramazanov A.-R.K., Magomedova V.G., “Splainy po trekhtochechnym ratsionalnym interpolyantam”, Tr. Matem. tsentra im. N.I. Lobachevskogo, 54, Kazan, 2017, 304–306

[14] Ramazanov A.-R.K., Magomedova V.G., “Splainy po trekhtochechnym ratsionalnym interpolyantam s avtonomnymi polyusami”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 16–28

[15] Ramazanov A.-R.K., Magomedova V.G., “Kovypuklaya interpolyatsiya splainami po trekhtochechnym ratsionalnym interpolyantam”, Tr. In–ta matematiki i mekhaniki UrO RAN, 24, no. 3, 2018, 1–12