On the uniform boundedness of the family of shifts of Steklov functions in weighted Lebesgue spaces with variable exponent
Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 93-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the uniform boundedness of the Steklov functions shifts families of the form $ S_{\lambda,\tau}(f)=S_{\lambda}(f)(x+\tau)=\lambda\int_{x+\tau-\frac 1{2\lambda}}^{x+\tau+\frac 1{2\lambda}}f(t)dt $ was considered. It was shown that these shifts are uniformly bounded in weighted variable exponent Lebesgue spaces $L^{p(x)}_{2\pi,w}$, where $w=w(x)$ is the weight function satisfying the analogue of Muckenhoupt's condition.
Keywords: Lebesgue spaces with variable exponent, Dini – Lipschitz condition, Steklov operators.
@article{DEMR_2017_8_a8,
     author = {T. N. Shakh-Emirov},
     title = {On the uniform boundedness of the family of shifts of {Steklov} functions in weighted {Lebesgue} spaces with variable exponent},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {93--99},
     publisher = {mathdoc},
     volume = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a8/}
}
TY  - JOUR
AU  - T. N. Shakh-Emirov
TI  - On the uniform boundedness of the family of shifts of Steklov functions in weighted Lebesgue spaces with variable exponent
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 93
EP  - 99
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a8/
LA  - ru
ID  - DEMR_2017_8_a8
ER  - 
%0 Journal Article
%A T. N. Shakh-Emirov
%T On the uniform boundedness of the family of shifts of Steklov functions in weighted Lebesgue spaces with variable exponent
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 93-99
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_8_a8/
%G ru
%F DEMR_2017_8_a8
T. N. Shakh-Emirov. On the uniform boundedness of the family of shifts of Steklov functions in weighted Lebesgue spaces with variable exponent. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 93-99. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a8/

[1] Sharapudinov I.I., “O topologii prostranstva $L^{p(t)}([0,1])$”, Matem. zametki, 26:4 (1979), 613–632 | MR | Zbl

[2] Sharapudinov I.I., Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012, 270 pp.

[3] Diening L., Harjulehto P., Hästö P. and Ruzicka M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017, Springer, 2011, 509 pp. | DOI | MR | Zbl

[4] Cruz-Uribe D., Fiorenza A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer, 2013, 312 pp. | MR | Zbl

[5] Magomed-Kasumov M.G., “Bazisnost sistemy Khaara v vesovykh prostranstvakh Lebega s peremennym pokazatelem”, Vladikavkazskii matematicheskii zhurnal, 16:3 (2014), 38–46 | MR | Zbl