Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2017_8_a8, author = {T. N. Shakh-Emirov}, title = {On the uniform boundedness of the family of shifts of {Steklov} functions in weighted {Lebesgue} spaces with variable exponent}, journal = {Daghestan Electronic Mathematical Reports}, pages = {93--99}, publisher = {mathdoc}, volume = {8}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a8/} }
TY - JOUR AU - T. N. Shakh-Emirov TI - On the uniform boundedness of the family of shifts of Steklov functions in weighted Lebesgue spaces with variable exponent JO - Daghestan Electronic Mathematical Reports PY - 2017 SP - 93 EP - 99 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a8/ LA - ru ID - DEMR_2017_8_a8 ER -
%0 Journal Article %A T. N. Shakh-Emirov %T On the uniform boundedness of the family of shifts of Steklov functions in weighted Lebesgue spaces with variable exponent %J Daghestan Electronic Mathematical Reports %D 2017 %P 93-99 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2017_8_a8/ %G ru %F DEMR_2017_8_a8
T. N. Shakh-Emirov. On the uniform boundedness of the family of shifts of Steklov functions in weighted Lebesgue spaces with variable exponent. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 93-99. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a8/
[1] Sharapudinov I.I., “O topologii prostranstva $L^{p(t)}([0,1])$”, Matem. zametki, 26:4 (1979), 613–632 | MR | Zbl
[2] Sharapudinov I.I., Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012, 270 pp.
[3] Diening L., Harjulehto P., Hästö P. and Ruzicka M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017, Springer, 2011, 509 pp. | DOI | MR | Zbl
[4] Cruz-Uribe D., Fiorenza A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer, 2013, 312 pp. | MR | Zbl
[5] Magomed-Kasumov M.G., “Bazisnost sistemy Khaara v vesovykh prostranstvakh Lebega s peremennym pokazatelem”, Vladikavkazskii matematicheskii zhurnal, 16:3 (2014), 38–46 | MR | Zbl