Overlapping transformations for approximation of continuous functions by means of repeated mean Valle Poussin
Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 70-92

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of trigonometric sums of Fourier $S_n(f,x)$ and classical means of Valle Poussin $$ _1V_{n,m}(f,x)= \frac1n\sum_{l=m}^{m+n-1}S_l(f,x) $$ in this paper, repeated mean Valle Poussin is introduced as follows $$ _2V_{n,m}(f,x)= \frac1n\sum_{k=m}^{m+n-1}{}_1V_{n,k}(f,x), $$ $$ {}_{l+1}V_{n,m}(f,x)= \frac1n\sum_{k=m}^{m+n-1} {}_{l}V_{n,k}(f,x)\quad(l\ge1). $$ On the basis of the mean $_2V_{n,m}(f,x)$ and overlapping transforms, operators that approximate continuous (in general, nonperiodic) functions are constructed and their approximative properties are investigated.
Keywords: the repeated mean Valle Poussin, overlapping transforms, local approximative properties.
@article{DEMR_2017_8_a7,
     author = {I. I. Sharapudinov},
     title = {Overlapping transformations for approximation of continuous functions by means of repeated mean {Valle} {Poussin}},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {70--92},
     publisher = {mathdoc},
     volume = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a7/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Overlapping transformations for approximation of continuous functions by means of repeated mean Valle Poussin
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 70
EP  - 92
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a7/
LA  - ru
ID  - DEMR_2017_8_a7
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Overlapping transformations for approximation of continuous functions by means of repeated mean Valle Poussin
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 70-92
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_8_a7/
%G ru
%F DEMR_2017_8_a7
I. I. Sharapudinov. Overlapping transformations for approximation of continuous functions by means of repeated mean Valle Poussin. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 70-92. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a7/