Convergence of Fourier series in Jacobi polynomials in weighted Lebesgue space with variable exponent
Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 27-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of basis property of the Jacobi polynomials system $P_n^{\alpha,\beta}(x)$ in the weighted Lebesgue space $L^{p(x)}_\mu([-1,1])$ with variable exponent $p(x)$ and $\mu(x) = (1-x)^\alpha(1+x)^\beta$ is considered. It is shown that if $\alpha,\beta>-1/2$ and $p(x)$ satisfies on $[-1,1]$ some natural conditions then the orthonormal Jacobi polynomials system $p_n^{\alpha,\beta}(x)=(h_n^{\alpha,\beta})^{-\frac12}P_n^{\alpha,\beta}(x)$ $(n=0,1,\ldots)$ is a basis of $L^{p(x)}_\mu([-1,1])$ as $4\frac{\alpha+1}{2\alpha+3}$, $4\frac{\beta+1}{2\beta+3}$.
Keywords: basis property of the Jacobi polynomials, Fourier-Jacobi sums, convergence in the weighted Lebesgue space with variable exponent, Dini-Lipshits condition.
@article{DEMR_2017_8_a3,
     author = {I. I. Sharapudinov and T. N. Shakh-Emirov},
     title = {Convergence of {Fourier} series in {Jacobi} polynomials in weighted {Lebesgue} space with variable exponent},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {27--47},
     publisher = {mathdoc},
     volume = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a3/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - T. N. Shakh-Emirov
TI  - Convergence of Fourier series in Jacobi polynomials in weighted Lebesgue space with variable exponent
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 27
EP  - 47
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a3/
LA  - ru
ID  - DEMR_2017_8_a3
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A T. N. Shakh-Emirov
%T Convergence of Fourier series in Jacobi polynomials in weighted Lebesgue space with variable exponent
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 27-47
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_8_a3/
%G ru
%F DEMR_2017_8_a3
I. I. Sharapudinov; T. N. Shakh-Emirov. Convergence of Fourier series in Jacobi polynomials in weighted Lebesgue space with variable exponent. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 27-47. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a3/

[1] Sharapudinov I.I., “O bazisnosti ultrasfericheskikh polinomov Yakobi v vesovom prostranstve Lebega s peremennym pokazatelem”, Matematicheskie zametki (to appear)

[2] Sharapudinov I.I., “O topologii prostranstva $ L^{p(x)}([0,1])$”, Matematicheskie zametki, 26:4 (1979), 613–632 | MR | Zbl

[3] Pollard H., “The mean convergence of orthogonal series”, Trans. Amer. Math. Soc., 62:2 (1947), 387–403 | DOI | MR | Zbl

[4] Pollard H., “The mean convergence of orthogonal series. II”, Trans. Amer. Math. Soc., 63:2 (1948), 355–367 | DOI | MR | Zbl

[5] Pollard H., “The mean convergence of orthogonal series. III”, Duke Math. J., 16:1 (1949), 189–191 | DOI | MR | Zbl

[6] Newman J., Rudin W., “Mean convergence of orthogonal series”, Proc. Amer. Math. Soc., 3:2 (1952), 219–222 | DOI | MR | Zbl

[7] Muckenhoupt B., “Mean convergence of Jacobi series”, Proc. Amer. Math. Soc., 23:2 (1969), 306–310 | DOI | MR | Zbl

[8] Sharapudinov I.I., “O bazisnosti sistemy polinomov Lezhandra v prostranstve Lebega $L^{p(x)}(-1,1)$ s peremennym pokazatelem $p(x)$”, Matematicheskii sbornik, 200:1 (2009), 137–160 | DOI | MR | Zbl

[9] Sharapudinov I.I., “O bazisnosti sistemy Khaara v prostranstve $L^{p(x)}([0,1])$ i printsipe lokalizatsii v srednem”, Matematicheskii sbornik, 130(172):2(6) (1986), 275–283 | MR

[10] Sharapudinov I.I., “O ravnomernoi ogranichennosti v $L^p$ $(p=p(x))$ nekotorykh semeistv operatorov svertki”, Matematicheskie zametki, 59:2 (1996), 291–302 | DOI | MR | Zbl

[11] Sharapudinov I.I., “Nekotorye voprosy teorii priblizheniya v prostranstvakh $L^{p(x)}$”, Analysis Mathematica, 33:2 (2007), 135–153 | DOI | MR

[12] Sharapudinov I.I., Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, Itogi nauki. Yug Rossii. Seriya: Matematicheskaya monografiya, 5, Vladikavkazskii nauchnyi tsentr RAN i pravitelstva Severnoi Osetii-Alanii, Vladikavkaz, 2012

[13] Sharapudinov I.I., “Priblizhenie funktsii v $L^{p(x)}_{2\pi}$ trigonometricheskimi polinomami”, Izvestiya RAN: Seriya matematicheskaya, 77:2 (2013), 197–-224 | DOI | MR | Zbl

[14] Diening Lars, Harjulehto Petteri, Hastö Peter, Růžička Michael, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Springer, 2017 | MR

[15] David V. Cruz-Uribe, Alberto Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, 4968, Springer Basel, 2013 | MR | Zbl

[16] Zigmund A., Trigonometricheskie ryady, Mir, Moskva, 1965 | MR

[17] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, Moskva, 1962