Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2017_8_a3, author = {I. I. Sharapudinov and T. N. Shakh-Emirov}, title = {Convergence of {Fourier} series in {Jacobi} polynomials in weighted {Lebesgue} space with variable exponent}, journal = {Daghestan Electronic Mathematical Reports}, pages = {27--47}, publisher = {mathdoc}, volume = {8}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a3/} }
TY - JOUR AU - I. I. Sharapudinov AU - T. N. Shakh-Emirov TI - Convergence of Fourier series in Jacobi polynomials in weighted Lebesgue space with variable exponent JO - Daghestan Electronic Mathematical Reports PY - 2017 SP - 27 EP - 47 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a3/ LA - ru ID - DEMR_2017_8_a3 ER -
%0 Journal Article %A I. I. Sharapudinov %A T. N. Shakh-Emirov %T Convergence of Fourier series in Jacobi polynomials in weighted Lebesgue space with variable exponent %J Daghestan Electronic Mathematical Reports %D 2017 %P 27-47 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2017_8_a3/ %G ru %F DEMR_2017_8_a3
I. I. Sharapudinov; T. N. Shakh-Emirov. Convergence of Fourier series in Jacobi polynomials in weighted Lebesgue space with variable exponent. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 27-47. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a3/
[1] Sharapudinov I.I., “O bazisnosti ultrasfericheskikh polinomov Yakobi v vesovom prostranstve Lebega s peremennym pokazatelem”, Matematicheskie zametki (to appear)
[2] Sharapudinov I.I., “O topologii prostranstva $ L^{p(x)}([0,1])$”, Matematicheskie zametki, 26:4 (1979), 613–632 | MR | Zbl
[3] Pollard H., “The mean convergence of orthogonal series”, Trans. Amer. Math. Soc., 62:2 (1947), 387–403 | DOI | MR | Zbl
[4] Pollard H., “The mean convergence of orthogonal series. II”, Trans. Amer. Math. Soc., 63:2 (1948), 355–367 | DOI | MR | Zbl
[5] Pollard H., “The mean convergence of orthogonal series. III”, Duke Math. J., 16:1 (1949), 189–191 | DOI | MR | Zbl
[6] Newman J., Rudin W., “Mean convergence of orthogonal series”, Proc. Amer. Math. Soc., 3:2 (1952), 219–222 | DOI | MR | Zbl
[7] Muckenhoupt B., “Mean convergence of Jacobi series”, Proc. Amer. Math. Soc., 23:2 (1969), 306–310 | DOI | MR | Zbl
[8] Sharapudinov I.I., “O bazisnosti sistemy polinomov Lezhandra v prostranstve Lebega $L^{p(x)}(-1,1)$ s peremennym pokazatelem $p(x)$”, Matematicheskii sbornik, 200:1 (2009), 137–160 | DOI | MR | Zbl
[9] Sharapudinov I.I., “O bazisnosti sistemy Khaara v prostranstve $L^{p(x)}([0,1])$ i printsipe lokalizatsii v srednem”, Matematicheskii sbornik, 130(172):2(6) (1986), 275–283 | MR
[10] Sharapudinov I.I., “O ravnomernoi ogranichennosti v $L^p$ $(p=p(x))$ nekotorykh semeistv operatorov svertki”, Matematicheskie zametki, 59:2 (1996), 291–302 | DOI | MR | Zbl
[11] Sharapudinov I.I., “Nekotorye voprosy teorii priblizheniya v prostranstvakh $L^{p(x)}$”, Analysis Mathematica, 33:2 (2007), 135–153 | DOI | MR
[12] Sharapudinov I.I., Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, Itogi nauki. Yug Rossii. Seriya: Matematicheskaya monografiya, 5, Vladikavkazskii nauchnyi tsentr RAN i pravitelstva Severnoi Osetii-Alanii, Vladikavkaz, 2012
[13] Sharapudinov I.I., “Priblizhenie funktsii v $L^{p(x)}_{2\pi}$ trigonometricheskimi polinomami”, Izvestiya RAN: Seriya matematicheskaya, 77:2 (2013), 197–-224 | DOI | MR | Zbl
[14] Diening Lars, Harjulehto Petteri, Hastö Peter, Růžička Michael, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Springer, 2017 | MR
[15] David V. Cruz-Uribe, Alberto Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, 4968, Springer Basel, 2013 | MR | Zbl
[16] Zigmund A., Trigonometricheskie ryady, Mir, Moskva, 1965 | MR
[17] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, Moskva, 1962