Convergence of Fourier series in Jacobi polynomials in weighted Lebesgue space with variable exponent
Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 27-47

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of basis property of the Jacobi polynomials system $P_n^{\alpha,\beta}(x)$ in the weighted Lebesgue space $L^{p(x)}_\mu([-1,1])$ with variable exponent $p(x)$ and $\mu(x) = (1-x)^\alpha(1+x)^\beta$ is considered. It is shown that if $\alpha,\beta>-1/2$ and $p(x)$ satisfies on $[-1,1]$ some natural conditions then the orthonormal Jacobi polynomials system $p_n^{\alpha,\beta}(x)=(h_n^{\alpha,\beta})^{-\frac12}P_n^{\alpha,\beta}(x)$ $(n=0,1,\ldots)$ is a basis of $L^{p(x)}_\mu([-1,1])$ as $4\frac{\alpha+1}{2\alpha+3}$, $4\frac{\beta+1}{2\beta+3}$.
Keywords: basis property of the Jacobi polynomials, Fourier-Jacobi sums, convergence in the weighted Lebesgue space with variable exponent, Dini-Lipshits condition.
@article{DEMR_2017_8_a3,
     author = {I. I. Sharapudinov and T. N. Shakh-Emirov},
     title = {Convergence of {Fourier} series in {Jacobi} polynomials in weighted {Lebesgue} space with variable exponent},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {27--47},
     publisher = {mathdoc},
     volume = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a3/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - T. N. Shakh-Emirov
TI  - Convergence of Fourier series in Jacobi polynomials in weighted Lebesgue space with variable exponent
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 27
EP  - 47
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a3/
LA  - ru
ID  - DEMR_2017_8_a3
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A T. N. Shakh-Emirov
%T Convergence of Fourier series in Jacobi polynomials in weighted Lebesgue space with variable exponent
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 27-47
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_8_a3/
%G ru
%F DEMR_2017_8_a3
I. I. Sharapudinov; T. N. Shakh-Emirov. Convergence of Fourier series in Jacobi polynomials in weighted Lebesgue space with variable exponent. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 27-47. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a3/