Approximation of piecewise linear functions by discrete Fourier sums
Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 21-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N$ be a natural number greater than $1$. We select $N$ uniformly distributed points $t_k = 2\pi k / N$ $(0 \leq k \leq N - 1)$ on $[0,2\pi]$. Denote by $L_{n,N}(f)=L_{n,N}(f,x)$ $(1\leq n\leq N/2)$ the trigonometric polynomial of order $n$ possessing the least quadratic deviation from $f$ with respect to the system $\{t_k\}_{k=0}^{N-1}$. In the present article the problem of function approximation by the polynomials $L_{n,N}(f,x)$ is considered. Special attention is paid to approximation of $2\pi$-periodic functions $f_1$ and $f_2$ by the polynomials $L_{n,N}(f,x)$, where $f_1(x)=|x|$ and $f_2(x)=\mathrm{sign}\, x$ for $x \in [-\pi,\pi]$. For the first function $f_1$ we show that instead of the estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c\ln n/n$ which follows from well-known Lebesgue inequality for the polynomials $L_{n,N}(f,x)$ we found an exact order estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c/n$ ($x \in \mathbb{R}$) which is uniform with respect to $1 \leq n \leq N/2$. Moreover, we found a local estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c(\varepsilon)/n^2$ ($\left|x - \pi k\right| \geq \varepsilon$) which is also uniform with respect to $1 \leq n \leq N/2$. For the second function $f_2$ we found only a local estimate $\left|f_{2}(x)-L_{n,N}(f_{2},x)\right| \leq c(\varepsilon)/n$ ($\left|x - \pi k\right| \geq \varepsilon$) which is uniform with respect to $1 \leq n \leq N/2$. The proofs of these estimations based on comparing of approximating properties of discrete and continuous finite Fourier series.
Keywords: function approximation, trigonometric polynomials, Fourier series.
@article{DEMR_2017_8_a2,
     author = {G. G. Akniev},
     title = {Approximation of piecewise linear functions by discrete {Fourier} sums},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {21--26},
     publisher = {mathdoc},
     volume = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a2/}
}
TY  - JOUR
AU  - G. G. Akniev
TI  - Approximation of piecewise linear functions by discrete Fourier sums
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 21
EP  - 26
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a2/
LA  - ru
ID  - DEMR_2017_8_a2
ER  - 
%0 Journal Article
%A G. G. Akniev
%T Approximation of piecewise linear functions by discrete Fourier sums
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 21-26
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_8_a2/
%G ru
%F DEMR_2017_8_a2
G. G. Akniev. Approximation of piecewise linear functions by discrete Fourier sums. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 21-26. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a2/

[1] Bernshtein S.N., “O trigonometricheskom interpolirovanii po sposobu naimenshikh kvadratov”, Dokl. AN SSSR, 4 (1934), 1–5

[2] Courant R., Differential and Integral Calculus, v. 1, Wiley-Interscience, New Jersey, 1988, 704 pp. | MR

[3] Erdös P., “Some theorems and remarks on interpolation”, Acta Sci. Math. (Szeged), 12 (1950), 11–17 | MR | Zbl

[4] Fikhtengolts G.M., Kurs differentsialno i integralnogo ischisleniya, v. 3, FIZMATLIT, M., 1969, 656 pp.

[5] Kalashnikov M.D., “O polinomakh nailuchshego (kvadraticheskogo) priblizheniya v zadannoi sisteme tochek”, Dokl. AN SSSR, 105 (1955), 634–636

[6] Krylov V.I., “Skhodimost algebraicheskogo interpolirovaniya po kornyam mnogochlena Chebysheva dlya absolyutno nepreryvnykh funktsii i funktsii s ogranichennym izmeneniem”, Dokl. AN SSSR, 107 (1956), 362–365 | Zbl

[7] Magomed-Kasumov M.G., “Approksimativnye svoistva srednikh Valle Pussena dlya kusochno gladkikh funktsii”, Mat. zametki, 100:2 (2016), 229–244 | DOI | MR | Zbl

[8] Marcinkiewicz J., “Quelques remarques sur l'interpolation”, Acta Sci. Math. (Szeged), 8 (1936), 127–130 (in French)

[9] Marcinkiewicz J., “Sur la divergence des polynômes d'interpolation”, Acta Sci. Math. (Szeged), 8 (1936), 131–135 (in French)

[10] Natanson I.P., “On the Convergence of Trigonometrical Interpolation at Equi-Distant Knots”, Annals of Mathematics, Second Series, 45:3, 457–471 | DOI | MR | Zbl

[11] Nikolskii S.M., “O nekotorykh metodakh priblizheniya trigonometricheskimi summami”, Izv. AN SSSR. Ser. matem., 4:6 (1940), 509–520

[12] Sharapudinov I.I., “On the best approximation and polynomials of the least quadratic deviation”, Anal. Math., 9:3 | MR

[13] Turetskii A.Kh., Teoriya interpolirovaniya v zadachakh, Vysheishaya shkola, Minsk, 1968, 320 pp.

[14] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965, 616 pp. | MR