The inversion of the Laplace transform by means of generalized special series of Laguerre polynomials
Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 7-20

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of inversion of the Laplace transform by means of a special series with respect to Laguerre polynomials, which in a particular case coincides with the Fourier series in polynomials $l_{r,k}^{\gamma}(x)$ $(r\in \mathbb{N}, k=0,1,\ldots)$, orthogonal with respect to a scalar product of Sobolev type of the following type \begin{equation*} ,g>=\sum\nolimits_{\nu=0}^{r-1}f^{(\nu)}(0)g^{(\nu)}(0)+\int_0^\infty f^{(r)}(t)g^{(r)}(t)t^\gamma e^{-t}dt, \gamma>-1. \end{equation*} Estimates of the approximation of functions by partial sums of a special series with respect to Laguerre polynomials are given.
Keywords: Laplace transforms, Laguerre polynomials, special series.
@article{DEMR_2017_8_a1,
     author = {I. I. Sharapudinov},
     title = {The inversion of the {Laplace} transform by means of generalized special series of {Laguerre} polynomials},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {7--20},
     publisher = {mathdoc},
     volume = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a1/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - The inversion of the Laplace transform by means of generalized special series of Laguerre polynomials
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 7
EP  - 20
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a1/
LA  - ru
ID  - DEMR_2017_8_a1
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T The inversion of the Laplace transform by means of generalized special series of Laguerre polynomials
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 7-20
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_8_a1/
%G ru
%F DEMR_2017_8_a1
I. I. Sharapudinov. The inversion of the Laplace transform by means of generalized special series of Laguerre polynomials. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 7-20. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a1/