The inversion of the Laplace transform by means of generalized special series of Laguerre polynomials
Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 7-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of inversion of the Laplace transform by means of a special series with respect to Laguerre polynomials, which in a particular case coincides with the Fourier series in polynomials $l_{r,k}^{\gamma}(x)$ $(r\in \mathbb{N}, k=0,1,\ldots)$, orthogonal with respect to a scalar product of Sobolev type of the following type \begin{equation*} ,g>=\sum\nolimits_{\nu=0}^{r-1}f^{(\nu)}(0)g^{(\nu)}(0)+\int_0^\infty f^{(r)}(t)g^{(r)}(t)t^\gamma e^{-t}dt, \gamma>-1. \end{equation*} Estimates of the approximation of functions by partial sums of a special series with respect to Laguerre polynomials are given.
Keywords: Laplace transforms, Laguerre polynomials, special series.
@article{DEMR_2017_8_a1,
     author = {I. I. Sharapudinov},
     title = {The inversion of the {Laplace} transform by means of generalized special series of {Laguerre} polynomials},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {7--20},
     publisher = {mathdoc},
     volume = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a1/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - The inversion of the Laplace transform by means of generalized special series of Laguerre polynomials
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 7
EP  - 20
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a1/
LA  - ru
ID  - DEMR_2017_8_a1
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T The inversion of the Laplace transform by means of generalized special series of Laguerre polynomials
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 7-20
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_8_a1/
%G ru
%F DEMR_2017_8_a1
I. I. Sharapudinov. The inversion of the Laplace transform by means of generalized special series of Laguerre polynomials. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 7-20. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a1/

[1] Sharapudinov I.I., Smeshannye ryady po ortogonalnym polinomam, Izdatelstvo Dagestanskogo nauchnogo tsentra, Makhachkala, 2004, 176 pp.

[2] Sharapudinov I.I., “Smeshannye ryady po polinomam Chebysheva, ortogonalnym na ravnomernoi setke”, Matematicheskie zametki, 78:3 (2005), 442–-465 | DOI | MR | Zbl

[3] Sharapudinov I.I., “Approksimativnye svoistva smeshannykh ryadov po polinomam Lezhandra na klassakh $W^r$”, Matematicheskii sbornik, 197:3 (2006), 135-–154 | DOI | MR | Zbl

[4] Sharapudinov I.I., “Approksimativnye svoistva srednikh tipa Valle-Pussena chastichnykh summ smeshannykh ryadov po polinomam Lezhandra”, Matematicheskie zametki, 84:3 (2008), 452–471 | DOI | MR | Zbl

[5] Sharapudinov I.I., “Spetsialnye ryady po polinomam Lagerra i ikh approksimativnye svoistva”, Sibirskii matematicheskii zhurnal, 58:2 (2017), 440–467 | MR | Zbl

[6] Sharapudinov I.I., “Nekotorye spetsialnye ryady po obschim polinomam Lagerra i ryady Fure po polinomam Lagerra, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 31–-73

[7] Kwon K.H. and Littlejohn L.L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 1995, no. 2, 289–-303 | MR | Zbl

[8] Kwon K.H. and Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28 (1998), 547–-594 | DOI | MR | Zbl

[9] Marcellan F., Alfaro M. and Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48 (1993), 113–131, North-Holland | DOI | MR | Zbl

[10] Iserles A., Koch P.E., Norsett S.P. and Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65 (1991), 151–175 | DOI | MR | Zbl

[11] Meijer H.G., “Laguerre polynimials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73 (1993), 1–16 | DOI | MR | Zbl

[12] Marcellan F. and Yuan Xu, On Sobolev orthogonal polynomials, 2014, 40 pp., arXiv: 6249v1 [math.CA] | MR

[13] Lopez G., Marcellan F., Van Assche W., “Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product”, Constr. Approx., 11:1 (1995), 107–137 | DOI | MR | Zbl

[14] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, Moskva, 1962

[15] Askey R., Wainger S., “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Mathem., 87 (1965), 698–708 | MR

[16] Ditkin V.A., Prudnikov A.P., Operatsionnoe ischislenie, Vysshaya shkola, Moskva, 1975

[17] Krylov V.I., Skoblya N.S., Metody priblizhennogo preobrazovaniya Fure i obrascheniya preobrazovaniya Laplasa, Nauka, Moskva, 1974