Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2017_8_a1, author = {I. I. Sharapudinov}, title = {The inversion of the {Laplace} transform by means of generalized special series of {Laguerre} polynomials}, journal = {Daghestan Electronic Mathematical Reports}, pages = {7--20}, publisher = {mathdoc}, volume = {8}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a1/} }
TY - JOUR AU - I. I. Sharapudinov TI - The inversion of the Laplace transform by means of generalized special series of Laguerre polynomials JO - Daghestan Electronic Mathematical Reports PY - 2017 SP - 7 EP - 20 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a1/ LA - ru ID - DEMR_2017_8_a1 ER -
I. I. Sharapudinov. The inversion of the Laplace transform by means of generalized special series of Laguerre polynomials. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 7-20. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a1/
[1] Sharapudinov I.I., Smeshannye ryady po ortogonalnym polinomam, Izdatelstvo Dagestanskogo nauchnogo tsentra, Makhachkala, 2004, 176 pp.
[2] Sharapudinov I.I., “Smeshannye ryady po polinomam Chebysheva, ortogonalnym na ravnomernoi setke”, Matematicheskie zametki, 78:3 (2005), 442–-465 | DOI | MR | Zbl
[3] Sharapudinov I.I., “Approksimativnye svoistva smeshannykh ryadov po polinomam Lezhandra na klassakh $W^r$”, Matematicheskii sbornik, 197:3 (2006), 135-–154 | DOI | MR | Zbl
[4] Sharapudinov I.I., “Approksimativnye svoistva srednikh tipa Valle-Pussena chastichnykh summ smeshannykh ryadov po polinomam Lezhandra”, Matematicheskie zametki, 84:3 (2008), 452–471 | DOI | MR | Zbl
[5] Sharapudinov I.I., “Spetsialnye ryady po polinomam Lagerra i ikh approksimativnye svoistva”, Sibirskii matematicheskii zhurnal, 58:2 (2017), 440–467 | MR | Zbl
[6] Sharapudinov I.I., “Nekotorye spetsialnye ryady po obschim polinomam Lagerra i ryady Fure po polinomam Lagerra, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 31–-73
[7] Kwon K.H. and Littlejohn L.L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 1995, no. 2, 289–-303 | MR | Zbl
[8] Kwon K.H. and Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28 (1998), 547–-594 | DOI | MR | Zbl
[9] Marcellan F., Alfaro M. and Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48 (1993), 113–131, North-Holland | DOI | MR | Zbl
[10] Iserles A., Koch P.E., Norsett S.P. and Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65 (1991), 151–175 | DOI | MR | Zbl
[11] Meijer H.G., “Laguerre polynimials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73 (1993), 1–16 | DOI | MR | Zbl
[12] Marcellan F. and Yuan Xu, On Sobolev orthogonal polynomials, 2014, 40 pp., arXiv: 6249v1 [math.CA] | MR
[13] Lopez G., Marcellan F., Van Assche W., “Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product”, Constr. Approx., 11:1 (1995), 107–137 | DOI | MR | Zbl
[14] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, Moskva, 1962
[15] Askey R., Wainger S., “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Mathem., 87 (1965), 698–708 | MR
[16] Ditkin V.A., Prudnikov A.P., Operatsionnoe ischislenie, Vysshaya shkola, Moskva, 1975
[17] Krylov V.I., Skoblya N.S., Metody priblizhennogo preobrazovaniya Fure i obrascheniya preobrazovaniya Laplasa, Nauka, Moskva, 1974